题目内容

已知离散型随机变量X等可能取值1,2,3,…,n若P(1≤X≤3)=
1
5
,则n的值为(  )
A、3B、5C、10D、15
考点:离散型随机变量的期望与方差
专题:概率与统计
分析:由已知条件得P(X=1)=P(X=2)=P(X=3)=…=P(X=n)=
1
15
,所以n×
1
15
=1,由此能求出n=15.
解答: 解:∵离散型随机变量X等可能取值1,2,3,…,n,
P(1≤X≤3)=
1
5

∴P(X=1)=P(X=2)=P(X=3)=…=P(X=n)=
1
15

∴n×
1
15
=1,解得n=15.
故选:D.
点评:本题考查n的值的求法,是基础题,解题时要认真审题,注意等可能事件的概率的性质的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网