题目内容

已知Sn为数列{an}的前n项和,Sn=nan-3n(n-1)(n∈N*),且a2=11.
(1)求a1的值;
(2)求数列{an}的前n项和Sn
(3)设数列{bn}满足bn=
n
Sn
,求证:b1+b2+…+bn
2
3
3n+2
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得S2=a1+a2=2a2-3×2(2-1),a2=11,由此能求出a1
(2)当n≥2时,由an=Sn-Sn-1,得an=nan-3n(n-1)-(n-1)an-1-3(n-1)(n-2),从而得到数列{an}是首项a1=5,公差为6的等差数列,由此能求出数列{an}的前n项和Sn
(3)由bn=
n
Sn
=
1
3n+2
=
2
2
3n+2
2
3n-1
+
3n+2
=
2
3
3n+2
-
3n-1
),由此能证明b1+b2+…+bn
2
3
3n+2
解答: 解:(1)∵Sn=nan-3n(n-1)(n∈N*),且a2=11.
∴S2=a1+a2=2a2-3×2(2-1),
∵a2=11,解得a1=5.(2分)
(2)当n≥2时,由an=Sn-Sn-1
得an=nan-3n(n-1)-(n-1)an-1-3(n-1)(n-2),(4分)
∴(n-1)an-(n-1)an-1=6(n-1),
∴an-an-1=6,n≥2,n∈N*,(6分)
∴数列{an}是首项a1=5,公差为6的等差数列,
∴an=a1+6(n-1)=6n-1,(7分)
Sn=
n(a1+an)
2
=3n2+2n
.(8分)
(3)证明:∵bn=
n
Sn
=
1
3n+2
=
2
2
3n+2
2
3n-1
+
3n+2
(10分)
=
2(
3n+2
-
3n-1
)
(
3n+2
+
3n-1
)(
3n+2
-
3n-1
)
=
2
3
(
3n+2
-
3n-1
)
,(11分)
b1+b2+…+bn
2
3
[(
5
-
2
)+(
8
-
5
)+…+(
3n+2
-
3n-1
)]
(13分)
=
2
3
(
3n+2
-
2
)<
2
3
3n+2

∴b1+b2+…+bn
2
3
3n+2
.(14分)
点评:本题考查数列的首项的求法,考查数列的前n项和的求法,考查不等式的证明,是中档题,解题时要认真审题,注意等差数列的性质和放缩法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网