题目内容
求和:4n+3•4n-1+32•4n-2+…+3n-1•4+3n(n∈N*)= .
考点:数列的求和
专题:等差数列与等比数列
分析:Sn=4n+3•4n-1+32•4n-2+…+3n-1•4+3n(n∈N*),则
Sn=
+4n+3×4n-1+…+3n-2×42+3n-1×4,错位相减能求出Sn=4n+1-3n+1.
| 4 |
| 3 |
| 4n+1 |
| 3 |
解答:
解:设Sn=4n+3•4n-1+32•4n-2+…+3n-1•4+3n(n∈N*),
则
Sn=
+4n+3×4n-1+…+3n-2×42+3n-1×4,
两式相减,得
Sn=
×4n+1-3n,
∴Sn=4n+1-3n+1.
故答案为:4n+1-3n+1.
则
| 4 |
| 3 |
| 4n+1 |
| 3 |
两式相减,得
| 1 |
| 3 |
| 1 |
| 3 |
∴Sn=4n+1-3n+1.
故答案为:4n+1-3n+1.
点评:本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目