ÌâÄ¿ÄÚÈÝ
¶ÔÓÚijһ×Ô±äÁ¿ÎªxµÄº¯Êý£¬Èôµ±x=x0ʱ£¬Æäº¯ÊýֵҲΪx0£¬Ôò³Æµã£¨x0£¬x0£©Îª´Ëº¯ÊýµÄ²»¶¯µã£¬ÏÖÓжþ´Îº¯Êýy=x2+bx+c£®
£¨1£©Èôb=2£¬c=0£¬Çóº¯Êýy=x2+bx+cµÄ²»¶¯µã×ø±ê£»
£¨2£©Èôº¯Êýy=x2+bx+cͼÏóÉÏÓÐÁ½¸ö¹ØÓÚÔµã¶Ô³ÆµÄ²»¶¯µãA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬£¨x1£¾x2£©£¬¸ÃͼÏóÓëyÖá½»ÓÚCµã£¬ÇÒ¡÷ABCÊÇÒÔACΪֱ½Ç±ßµÄÖ±½ÇÈý½ÇÐΣ¬ÇóµãCµÄ×ø±ê£®
£¨1£©Èôb=2£¬c=0£¬Çóº¯Êýy=x2+bx+cµÄ²»¶¯µã×ø±ê£»
£¨2£©Èôº¯Êýy=x2+bx+cͼÏóÉÏÓÐÁ½¸ö¹ØÓÚÔµã¶Ô³ÆµÄ²»¶¯µãA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬£¨x1£¾x2£©£¬¸ÃͼÏóÓëyÖá½»ÓÚCµã£¬ÇÒ¡÷ABCÊÇÒÔACΪֱ½Ç±ßµÄÖ±½ÇÈý½ÇÐΣ¬ÇóµãCµÄ×ø±ê£®
¿¼µã£º¶þ´Îº¯ÊýµÄÐÔÖÊ
רÌ⣺¼ÆËãÌâ,º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ
·ÖÎö£º£¨1£©ÓÉÌâÒ⣬Áîy=x2+2x=x£»½âx¼´¿É£»
£¨2£©Áîy=x2+bx+c=x£»´Ó¶øÈ·¶¨b-1=0£»c£¼0£»´Ó¶øÇó³öµãA£¨
£¬
£©£¬B£¨-
£¬-
£©£»µãC£¨0£¬c£©£»ÔÙÓÉ¡÷ABCÊÇÒÔACΪֱ½Ç±ßµÄÖ±½ÇÈý½ÇÐÎÀûÓù´¹É¶¨ÀíÇó½â¼´¿É£®
£¨2£©Áîy=x2+bx+c=x£»´Ó¶øÈ·¶¨b-1=0£»c£¼0£»´Ó¶øÇó³öµãA£¨
| -c |
| -c |
| -c |
| -c |
½â´ð£º
½â£º£¨1£©ÓÉÌâÒ⣬Áîy=x2+2x=x£»
½âµÃx=0»òx=-1£»
¹Êº¯Êýy=x2+2xµÄ²»¶¯µã×ø±êΪ£¨0£¬0£©£¬£¨-1£¬-1£©£»
£¨2£©ÓÉÌâÒ⣬Áîy=x2+bx+c=x£»
Ôòx2+£¨b-1£©x+c=0£»
ÔòÓɺ¯Êýy=x2+bx+cͼÏóÉÏÓÐÁ½¸ö¹ØÓÚÔµã¶Ô³ÆµÄ²»¶¯µãA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬£¨x1£¾x2£©Öª£¬
b-1=0£»c£¼0£»
y1=x1=
£¬y2=x2=-
£¬
¹ÊµãA£¨
£¬
£©£¬B£¨-
£¬-
£©£»µãC£¨0£¬c£©£»
¹ÊÓÉ¡÷ABCÊÇÒÔACΪֱ½Ç±ßµÄÖ±½ÇÈý½ÇÐÎÖª£¬
BC2+AC2=AB2£¬
Ôò£¨-
£©2+£¨c+
£©2+£¨
£©2+£¨c-
£©2=£¨2
£©2+£¨2
£©2£»
¼´-c+2c2-2c-c=-8c£»
¹Êc=-2£®
¹ÊµãC£¨0£¬-2£©£®
½âµÃx=0»òx=-1£»
¹Êº¯Êýy=x2+2xµÄ²»¶¯µã×ø±êΪ£¨0£¬0£©£¬£¨-1£¬-1£©£»
£¨2£©ÓÉÌâÒ⣬Áîy=x2+bx+c=x£»
Ôòx2+£¨b-1£©x+c=0£»
ÔòÓɺ¯Êýy=x2+bx+cͼÏóÉÏÓÐÁ½¸ö¹ØÓÚÔµã¶Ô³ÆµÄ²»¶¯µãA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬£¨x1£¾x2£©Öª£¬
b-1=0£»c£¼0£»
y1=x1=
| -c |
| -c |
¹ÊµãA£¨
| -c |
| -c |
| -c |
| -c |
¹ÊÓÉ¡÷ABCÊÇÒÔACΪֱ½Ç±ßµÄÖ±½ÇÈý½ÇÐÎÖª£¬
BC2+AC2=AB2£¬
Ôò£¨-
| -c |
| -c |
| -c |
| -c |
| -c |
| -c |
¼´-c+2c2-2c-c=-8c£»
¹Êc=-2£®
¹ÊµãC£¨0£¬-2£©£®
µãÆÀ£º±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ»¯¼òÓëÓ¦Óã¬Í¬Ê±¿¼²éÁËѧÉú¶Ôж¨ÒåµÄ½ÓÊÜÓëÓ¦ÓÃÄÜÁ¦£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
É躯Êýf£¨x£©=
£¨a£¾0a¡Ù1£©£¬ÆäÖÐ[m]±íʾ²»³¬¹ýmµÄ×î´óÕûÊý£¬Èç[4.1]=4£¬Ôòº¯Êýy=[f£¨x£©-
]+[f£¨-x£©-
]µÄÖµÓòÊÇ£¨¡¡¡¡£©
| ax |
| 1+ax |
| 1 |
| 2 |
| 1 |
| 2 |
| A¡¢{0£¬1} |
| B¡¢{-1£¬1} |
| C¡¢{-1£¬0} |
| D¡¢{-1£¬0£¬1} |