题目内容
数列{an}满足a1=-13,
-
-
=0,且前n项的和为Sn.
(1)证明:数列{an}为等差数列;
(2)求数列{
}的前n项和Tn.
| 1 |
| an |
| 2 |
| an•an+1 |
| 1 |
| an+1 |
(1)证明:数列{an}为等差数列;
(2)求数列{
| Sn |
| n |
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)由已知条件得
-
=
,由此能证明{an}为首项a1=-13,公差为d=2的等差数列.
(2)由Sn=-13n+
×2=n2-14n,得
=n-14,由此能求出数列{
}的前n项和Tn.
| 1 |
| an |
| 1 |
| an+1 |
| 2 |
| an•an+1 |
(2)由Sn=-13n+
| n(n-1) |
| 2 |
| Sn |
| n |
| Sn |
| n |
解答:
(1)证明:∵数列{an}满足a1=-13,
-
-
=0,
∴
-
=
,
∴an+1-an=2,
∴{an}为首项a1=-13,公差为d=2的等差数列.
(2)解:∵{an}为首项a1=-13,公差为d=2的等差数列,
∴Sn=-13n+
×2=n2-14n,
∴
=n-14,
∴数列{
}是首项为-13,公差为1的等差数列,
∴Tn=-13n+
×1=
n2-
n.
| 1 |
| an |
| 2 |
| an•an+1 |
| 1 |
| an+1 |
∴
| 1 |
| an |
| 1 |
| an+1 |
| 2 |
| an•an+1 |
∴an+1-an=2,
∴{an}为首项a1=-13,公差为d=2的等差数列.
(2)解:∵{an}为首项a1=-13,公差为d=2的等差数列,
∴Sn=-13n+
| n(n-1) |
| 2 |
∴
| Sn |
| n |
∴数列{
| Sn |
| n |
∴Tn=-13n+
| n(n-1) |
| 2 |
| 1 |
| 2 |
| 27 |
| 2 |
点评:本题考查等差数列的证明,考查数列的前n项和的求法,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目
若sin(α+β)=
,sin(α-β)=
,则
等于( )
| 4 |
| 5 |
| 3 |
| 5 |
| tanα |
| tanβ |
| A、7 | ||
| B、-7 | ||
C、
| ||
D、-
|
一个圆柱的母线长度为2,底为半径为1的圆,则此圆柱的侧面积是( )
| A、π | B、2π | C、3π | D、4π |