题目内容

数列{an}满足a1=-13,
1
an
-
2
anan+1
-
1
an+1
=0,且前n项的和为Sn
(1)证明:数列{an}为等差数列;
(2)求数列{
Sn
n
}的前n项和Tn
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)由已知条件得
1
an
-
1
an+1
=
2
anan+1
,由此能证明{an}为首项a1=-13,公差为d=2的等差数列.
(2)由Sn=-13n+
n(n-1)
2
×2
=n2-14n,得
Sn
n
=n-14
,由此能求出数列{
Sn
n
}的前n项和Tn
解答: (1)证明:∵数列{an}满足a1=-13,
1
an
-
2
anan+1
-
1
an+1
=0,
1
an
-
1
an+1
=
2
anan+1

∴an+1-an=2,
∴{an}为首项a1=-13,公差为d=2的等差数列.
(2)解:∵{an}为首项a1=-13,公差为d=2的等差数列,
Sn=-13n+
n(n-1)
2
×2
=n2-14n,
Sn
n
=n-14

∴数列{
Sn
n
}是首项为-13,公差为1的等差数列,
∴Tn=-13n+
n(n-1)
2
×1
=
1
2
n2-
27
2
n
点评:本题考查等差数列的证明,考查数列的前n项和的求法,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网