题目内容
7.$若f(n)=tan\frac{nπ}{3},(n∈{N^*}),则f(1)+f(2)+…+f(2017)$=( )| A. | $-\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 0 | D. | $-2\sqrt{3}$ |
分析 根据f(n)的值出现的规律知,此函数的一个周期为3的函数,利用函数的周期性知f(1)+f(2)+f(3)=0,由此计算f(1)+f(2)+f(3)+…+f(2017)的值.
解答 解:f(n)=tan$\frac{nπ}{3}$,n∈N*;
∴f(1)=tan$\frac{π}{3}$=$\sqrt{3}$,f(2)=tan$\frac{2π}{3}$=-$\sqrt{3}$,f(3)=tanπ=0,
f(4)=tan$\frac{4π}{3}$=$\sqrt{3}$,f(5)=tan$\frac{5π}{3}$=-$\sqrt{3}$,f(6)=tan2π=0,…;
∴f(1)+f(2)+f(3)=f(4)+f(5)+f(6)=0,
∴f(1)+f(2)+f(3)+…+f(2017)
=$\frac{2016}{3}$×0+tan$\frac{2017π}{3}$
=$\sqrt{3}$.
故选:B.
点评 本题考查了利用函数周期性求函数值的应用问题,是基础题.
练习册系列答案
相关题目
18.将函数$y=4sin({4x+\frac{π}{6}})$的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将所得图象向右平移$\frac{π}{6}$个单位,则所得函数图象的一个对称中心为( )
| A. | (0,0) | B. | $({\frac{π}{3},0})$ | C. | $({\frac{π}{12},0})$ | D. | $({\frac{5}{8}π,0})$ |
15.已知向量$\overrightarrow{m}$=(2cos2x,$\sqrt{3}$),$\overrightarrow{n}$=(1,sin2x),设函数$f(x)=\overrightarrow m•\overrightarrow n$,则下列关于函数y=f(x)的性质的描述正确的是( )
| A. | 关于直线$x=\frac{π}{12}$对称 | B. | 关于点$({\frac{5π}{12},0})$对称 | ||
| C. | 周期为2π | D. | y=f(x)在$({-\frac{π}{3},0})$上是增函数 |
2.若不等式n2-n(λ+1)+7≥λ,对一切n∈N*恒成立,则实数λ的取值范围( )
| A. | λ≤3 | B. | λ≤4 | C. | 2≤λ≤3 | D. | 3≤λ≤4 |
3.设a>0,b>0,且a+b≤4,则有( )
| A. | $\frac{1}{ab}$≥$\frac{1}{2}$ | B. | $\frac{1}{a2+b2}$≤$\frac{1}{4}$ | C. | $\sqrt{ab}$≥2 | D. | $\frac{1}{a}$+$\frac{1}{b}$≥1 |