题目内容

2.若不等式n2-n(λ+1)+7≥λ,对一切n∈N*恒成立,则实数λ的取值范围(  )
A.λ≤3B.λ≤4C.2≤λ≤3D.3≤λ≤4

分析 推导出n2-n+7≥λ(n+1),从而λ≤$\frac{{n}^{2}-n+7}{n+1}$对一切n∈N*恒成立.由此利用基本不等式能求出实数λ的取值范围.

解答 解:∵不等式n2-n(λ+1)+7≥λ,对一切n∈N*恒成立,
∴n2-n+7≥λ(n+1),
∵n∈N*,∴λ≤$\frac{{n}^{2}-n+7}{n+1}$对一切n∈N*恒成立.
而$\frac{{n}^{2}-n+7}{n+1}$=$\frac{(n+1)^{2}-3(n+1)+9}{n+1}$=(n+1)+$\frac{9}{n+1}$-3≥$2\sqrt{(n+1)•\frac{9}{n+1}}$-3=3,
当且仅当n+1=$\frac{9}{n+1}$,即=2时等号成立,
∴n≤3.
故选:A.

点评 本题考查实数的取值范围的求法,涉及到数列、均值不等式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网