题目内容

5.曲线C是平面内与两个定点F1(-2,0),F2(2,0)的距离之积等于9的点的轨迹.给出下列命题:
①曲线C过坐标原点;
②曲线C关于坐标轴对称;
③若点P在曲线C上,则△F1PF2的周长有最小值10;
④若点P在曲线C上,则△F1PF2面积有最大值$\frac{9}{2}$.
其中正确命题的个数为(  )
A.0B.1C.2D.3

分析 根据定义求出曲线C的方程,根据方程特点判断①,②,根据基本不等式判断③,把y2看作x2的函数,解出y2,得出S=2y,求出y的范围即可得出S的范围.

解答 解:设曲线C上任意一点的坐标为P(x,y),则[(x+2)2+y2]•[(x-2)2+y2]=81,
①把x=0,y=0代入上式得1=81,故曲线C不经过原点,故①错误;
②把(-x,y)代入上式得[(-x+2)2+y2][(-x-2)2+y2]=[(x-2)2+y2][(x+2)2+y2]=81,
∴曲线C关于y轴对称,
把(x,-y)代入上式显然也成立,故曲线C关于x轴对称,故②正确;
③∵|PF1|+|PF2|≥2$\sqrt{|PF1|•|PF2|}$=2$\sqrt{9}$=6,
∴△F1PF2的周长为|PF1|+|PF2|+|F1F2|≥6+4=10,故③正确;
④△F1PF2面积S=$\frac{1}{2}×4×y$=2y,∴S2=4y2
∵[(x+2)2+y2]•[(x-2)2+y2]=81,∴y4+(2x2+8)y2+(x2-4)2-81=0,
∴y2=$\sqrt{24{x}^{2}+81}$-x2-4或y2=-$\sqrt{24{x}^{2}+81}$-x2-4(舍).
设$\sqrt{24{x}^{2}+81}$=t,则x2=$\frac{{t}^{2}-81}{24}$,
∴y2=t-$\frac{{t}^{2}-81}{24}$-4=-$\frac{1}{24}$t2+t-$\frac{5}{8}$=-$\frac{1}{24}$(t-12)2+$\frac{43}{8}$,
∴当t=12时,y2取得最大值$\frac{43}{8}$,即S的最大值为2$\sqrt{\frac{43}{8}}$,故④错误.
故选C.

点评 本题考查了轨迹方程的求解,基本不等式及函数最值的计算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网