题目内容
2.已知U=R,集合A={x|a-2<x<a+2},B={x|x2-(a+2)x+2a=0},a∈R,(1)若a=0,求A∪B;
(2)若(∁UA)∩B≠∅,求a的取值范围.
分析 (1)当a=0时,分别求出集合A和B,由此利用并集定义能求出A∪B.
(2)当a=2时,(CUA)∩B=∅;当a≠2时,根据(CUA)∩B≠∅,得2∈CUA,由此能求出a的取值范围.
解答 解:(1)当a=0时,A={x|-2<x<2},B={0,2},
∴A∪B={x|-2<x≤2}.
(2)∵集合A={x|a-2<x<a+2},B={x|x2-(a+2)x+2a=0},a∈R,
∴当a=2时,CUA={x|x≤0或x≥4},B={2},(CUA)∩B=∅,不合题意;
当a≠2时,CUA={x|x≤a-2或x≥a+2},B={2,a},
∵a-2<a<a+2,∴a∉CUA,
∴根据(CUA)∩B≠∅,得2∈CUA,
∴2≤a-2或2≥a+2,解得a≤0或a≥4.
综上,a的取值范围是(-∞,0]∪[4,+∞).
点评 本题考查并集、交集的求法,考查实数的取值范围的求法,是基础题,解题时要认真审题,注意并集、交集、子集的性质的合理运用.
练习册系列答案
相关题目
12.已知f(x)=$\left\{\begin{array}{l}{e^x}+a{x^2},x>0\\ \frac{1}{e^x}+a{x^2},x<0\end{array}$,若函数f(x)有四个零点,则实数a的取值范围是( )
| A. | (-∞,-e) | B. | (-∞,-$\frac{{e}^{2}}{4}$) | C. | (-∞,-$\frac{{e}^{3}}{9}$) | D. | (-∞,-$\frac{{e}^{4}}{16}$) |
17.函数$y={log_a}({2{x^2}-3x+1})$,当x=3时,y<0则该函数的单调递减区间是( )
| A. | $({-∞,\frac{3}{4}})$ | B. | $({\frac{3}{4},+∞})$ | C. | $({-∞,\frac{1}{2}})$ | D. | (1,+∞) |
7.设$({x^2}-3){(2x+3)^{2015}}={a_0}+{a_1}(x+2)+{a_2}{(x+2)^2}+…+{a_{2017}}{(x+2)^{2017}}$,则a1+a2+…+a2017的值为( )
| A. | -1 | B. | -2 | C. | 1 | D. | 2 |
14.某青年教师有一专项课题是进行“学生数学成绩与物理成绩的关系”的研究,他调查了某中学高二年级800名学生上学期期末考试的数学和物理成绩,把成绩按优秀和不优秀分类得到的结果是:数学和物理都优秀的有60人,数学成绩优秀但物理不优秀的有140人,物理成绩优秀但数学不优秀的有60人.
(1)能否在犯错概率不超过0.001的前提下认为该中学学生的数学成绩与物理成绩有关?
(2)将上述调查所得到的频率视为概率,从全体高二年级学生成绩中,有放回地随机抽取4名学生的成绩,记抽取的4份成绩中数学、物理两科成绩恰有一科优秀的份数为X,求X的分布列和期望E(X).
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
(1)能否在犯错概率不超过0.001的前提下认为该中学学生的数学成绩与物理成绩有关?
(2)将上述调查所得到的频率视为概率,从全体高二年级学生成绩中,有放回地随机抽取4名学生的成绩,记抽取的4份成绩中数学、物理两科成绩恰有一科优秀的份数为X,求X的分布列和期望E(X).
附:
| P(K2≥k0) | 0.100 | 0.050 | 0.010 |
| k0 | 6.635 | 7.879 | 10.828 |
11.下列判断错误的是( )
| A. | 命题“若am2≤bm2,则a≤b”是假命题 | |
| B. | 直线y=$\frac{1}{2}$x+b不能作为函数f(x)=$\frac{1}{{e}^{x}}$图象的切线 | |
| C. | “若a=1,则直线x+y=0和直线x-ay=0互相垂直”的逆否命题为真命题 | |
| D. | “f′(x0)=0”是“函数f(x)在x0处取得极值”的充分不必要条件 |
12.定义在R上的奇函数f(x)满足在(-∞,0)上为增函数且f(-1)=0,则不等式x•f(x)>0的解集为( )
| A. | (-∞,-1)∪(1,+∞) | B. | (-1,0)∪(0,1) | C. | (-1,0)∪(1,+∞) | D. | (-∞,-1)∪(0,1) |