题目内容
在线性约束条件
下,目标函数z=2x+y的最小值是.( )
|
| A、9 | B、2 | C、3 | D、4 |
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.
解答:
解:作出不等式组对应的平面区域如图:
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线的截距最小,
此时z最小,
由
,解得
,
即A(1,1),此时z=1×2+1=3,
故选:C
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线的截距最小,
此时z最小,
由
|
|
即A(1,1),此时z=1×2+1=3,
故选:C
点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
若实数x,y满足
,则z=x-2y的最大值是( )
|
| A、0 | ||
B、
| ||
| C、1 | ||
| D、2 |
如果loga+
(a2+1)≤loga+
2a,则实数a的取值范围是( )
| 1 |
| 2 |
| 1 |
| 2 |
A、(
| ||
B、(-∞,
| ||
| C、(3,+∞) | ||
D、(0,
|
给出下列说法,其中正确的个数是( )
(1)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行;
(2)过平面外一点,可以做无数条直线与已知平面平行;
(3)过平面外一点只可作一个平面与已知平面垂直;
(4)过不在平面内的一条直线可以作无数个平面与已知平面垂直.
(1)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行;
(2)过平面外一点,可以做无数条直线与已知平面平行;
(3)过平面外一点只可作一个平面与已知平面垂直;
(4)过不在平面内的一条直线可以作无数个平面与已知平面垂直.
| A、0个 | B、1个 | C、2个 | D、3个 |
给定:an=logn+1(n+2)(n∈N*),定义使a1.a2.a3ak为整数的数k(k∈N*)叫做数列{an}的“企盼数”,则区间[1,2013]内所有“企盼数”的和为( )
| A、2026 | B、2024 |
| C、2028 | D、2014 |