题目内容
已知点(1,
)是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=
+
(n≥2).
(1)求数列{an}、{bn}的通项公式;
(2)若数列{
}的前n项和为Tn,问满足Tn>
的最小值n是多少?
| 1 |
| 3 |
| Sn |
| Sn-1 |
(1)求数列{an}、{bn}的通项公式;
(2)若数列{
| 1 |
| bnbn+1 |
| 1003 |
| 2012 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件推导出c=1,公比q=
=
,从而得到an=-
•(
)n-1=-2•(
)n (n∈N*);由Sn-Sn-1=(
-
)(
+
)=
+
,(n≥2),得
-
=1从而得到数列{
}构成一个首项为1公差为1的等差数列.进而得到Sn=n2,由此求出bn=2n-1,(n∈N*)
(2)由
=
=
(
-
),利用裂项求和法能求出满足Tn>
的最小正整数为168.
| a2 |
| a1 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| Sn |
| Sn-1 |
| Sn |
| Sn-1 |
| Sn |
| Sn+1 |
| Sn |
| Sn-1 |
| Sn |
(2)由
| 1 |
| bnbn+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1003 |
| 2012 |
解答:
解:(1)f(1)=a=
,∴f(x)=(
)x
a1=f(1)-c=
-c,a2=[f(2)-c]-[f(1)-c]=-
,
a3=[f(3)-c]-[f(2)-c]=-
,
又数列{an}成等比数列,a1=
=
=-
=
-c,
解得c=1,
又公比q=
=
,∴an=-
•(
)n-1=-2•(
)n (n∈N*)
∵Sn-Sn-1=(
-
)(
+
)=
+
,(n≥2)
又bn>0>0,
>0,∴
-
=1
数列{
}构成一个首项为1公差为1的等差数列.
=1+(n-1)×1=n,∴Sn=n2,
当n≥2,bn=Sn-Sn-1=n2-(n-1)2=2n-1,
∴bn=2n-1,(n∈N*)
(2)∵
=
=
(
-
),
∴Tn=
(1-
+
-
+…+
-
)
=
(1-
)
=
,
由Tn=
>
,得n>
,
满足Tn>
的最小正整数为168.
| 1 |
| 3 |
| 1 |
| 3 |
a1=f(1)-c=
| 1 |
| 3 |
| 2 |
| 9 |
a3=[f(3)-c]-[f(2)-c]=-
| 2 |
| 27 |
又数列{an}成等比数列,a1=
| a22 |
| a3 |
| ||
-
|
| 2 |
| 3 |
| 1 |
| 3 |
解得c=1,
又公比q=
| a2 |
| a1 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
∵Sn-Sn-1=(
| Sn |
| Sn-1 |
| Sn |
| Sn-1 |
| Sn |
| Sn+1 |
又bn>0>0,
| Sn |
| Sn |
| Sn-1 |
数列{
| Sn |
| Sn |
当n≥2,bn=Sn-Sn-1=n2-(n-1)2=2n-1,
∴bn=2n-1,(n∈N*)
(2)∵
| 1 |
| bnbn+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
=
| n |
| 2n+1 |
由Tn=
| n |
| 2n+1 |
| 1003 |
| 2012 |
| 1003 |
| 6 |
满足Tn>
| 1003 |
| 2012 |
点评:本题考查数列的通项公式的求法,求满足不等式的实数的最小值的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
| AP |
| AB |
| AE |
A、[
| ||
B、[
| ||
C、[1,
| ||
| D、[1,2] |
复数
=( )
| 3 |
| (1-i)2 |
| A、-i | ||
| B、i | ||
C、
| ||
D、-
|