题目内容
已知等差数列{an},则“a2>a1”是“数列{an}为单调递增数列”的( )
| A、充分而不必要条件 |
| B、必要而不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |
考点:必要条件、充分条件与充要条件的判断
专题:等差数列与等比数列,简易逻辑
分析:根据充分条件和必要条件的定义进行判断即可.
解答:
解:在等差数列{an}中,若a2>a1,则d>0,即数列{an}为单调递增数列,
若数列{an}为单调递增数列,则a2>a1,成立,
即“a2>a1”是“数列{an}为单调递增数列”充分必要条件,
故选:C.
若数列{an}为单调递增数列,则a2>a1,成立,
即“a2>a1”是“数列{an}为单调递增数列”充分必要条件,
故选:C.
点评:本题主要考查充分条件和必要条件的判断,等差数列的性质是解决本题的关键.
练习册系列答案
相关题目
一个箱子中装有9张卡片,分别标有数字1,2,3,…,9,现在有放回地依次抽取3张,然后按抽取的先后顺序依次构成一个三位数,则这三位数中恰有两个数字重复的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
设[x)表示大于x的最小整数,如[3)=4,[-1.2)=-1,下列结论:
①[0)=0;②[x)-x的最小值是0;③[x)-x的最大值是0;④存在实数x,使[x)-x=0.5成立.其中正确的个数为( )
①[0)=0;②[x)-x的最小值是0;③[x)-x的最大值是0;④存在实数x,使[x)-x=0.5成立.其中正确的个数为( )
| A、0 | B、1 | C、2 | D、3 |
某大型表演中,需要把200人排成一人数前哨少后多的梯形对阵,梯形对阵排数大于3排,且要求各行的人数必须是连续的自然数,这样才能使后一排的人均站在前一排两人间的空档处,那么,满足上述要求的排法的方案有( )
| A、1种 | B、2种 | C、4种 | D、0种 |
如图所示,在复平面内,点A对应的复数为z,则复数z2=( )

| A、-3-4i | B、5+4i |
| C、5-4i | D、3-4i |