ÌâÄ¿ÄÚÈÝ
7£®ÈôÊýÁÐ{an}Âú×㣺´æÔÚÕýÕûÊýT£¬¶ÔÓÚÈÎÒâÕýÕûÊýn¶¼ÓÐan+T=an³ÉÁ¢£¬Ôò³ÆÊýÁÐ{an}ΪÖÜÆÚÊýÁУ¬ÖÜÆÚΪT£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=m£¨m£¾0£©£¬${a}_{n+1}=\left\{\begin{array}{l}{{a}_{n}-1£¬{a}_{n}£¾1}\\{\frac{1}{{a}_{n}}£¬0£¼{a}_{n}¡Ü1}\end{array}\right.$£¬Èôa3=4£¬ÔòmµÄËùÓпÉÄÜȡֵΪ£¨¡¡¡¡£©| A£® | {6£¬$\frac{5}{4}$} | B£® | {6£¬$\frac{5}{4}$£¬$\frac{2}{5}$} | C£® | {6£¬$\frac{5}{4}$£¬$\frac{1}{5}$} | D£® | {6£¬$\frac{1}{5}$} |
·ÖÎö ¶Ôm·ÖÀàÌÖÂÛ£¬ÀûÓõÝÍÆ¹ØÏµ¼´¿ÉµÃ³ö£®
½â´ð ½â£ºÊýÁÐ{an}Âú×ãa1=m£¨m£¾0£©£¬${a}_{n+1}=\left\{\begin{array}{l}{{a}_{n}-1£¬{a}_{n}£¾1}\\{\frac{1}{{a}_{n}}£¬0£¼{a}_{n}¡Ü1}\end{array}\right.$£¬a3=4£¬
¢ÙÈôm£¾2£¬Ôòa2=m-1£¾1£¬¡àa3=m-2=4£¬½âµÃm=6£®
¢ÚÈôm=2£¬Ôòa2=m-1=1£¬¡àa3=$\frac{1}{{a}_{2}}$=1¡Ù4£¬ÉáÈ¥£®
¢ÛÈô1£¼m£¼2£¬Ôòa2=m-1¡Ê£¨0£¬1£©£¬¡àa3=$\frac{1}{m-1}$=4£¬½âµÃm=$\frac{5}{4}$£®
¢ÜÈôm=1£¬Ôòa2=$\frac{1}{{a}_{1}}$=1£¬¡àa3=$\frac{1}{{a}_{2}}$¡Ù4£¬ÉáÈ¥£®
¢ÝÈô0£¼m£¼1£¬Ôòa2=$\frac{1}{{a}_{1}}$=$\frac{1}{m}$£¾1£¬¡àa3=a2-1=$\frac{1}{m}$-1=4£¬½âµÃm=$\frac{1}{5}$£®
×ÛÉϿɵãºm¡Ê$\{6£¬\frac{5}{4}£¬\frac{1}{5}\}$£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éÁ˵ȱÈÊýÁеÄͨÏʽ¡¢µÝÍÆ¹ØÏµ£¬¿¼²éÁË·ÖÀàÌÖÂÛ·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
20£®ÒÑÖªµãF1¡¢F2ÊÇË«ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬OÎª×ø±êԵ㣬µãPÔÚË«ÇúÏßCµÄÓÒÖ§ÉÏ£¬ÇÒÂú×ã|F1F2|=2|OP|£¬|PF1|¡Ý3|PF2|£¬ÔòË«ÇúÏßCµÄÀëÐÄÂʵÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
| A£® | £¨1£¬+¡Þ£© | B£® | [$\frac{\sqrt{10}}{2}$£¬+¡Þ£© | C£® | £¨1£¬$\frac{\sqrt{10}}{2}$] | D£® | £¨1£¬$\frac{5}{2}$] |
15£®ÈôÃüÌâ¡°?x¡Ê[0£¬$\frac{¦Ð}{2}$]£¬²»µÈʽexsinx¡Ýkx¡±ÊÇÕæÃüÌ⣬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨-¡Þ£¬1] | B£® | £¨-¡Þ£¬e${\;}^{\frac{¦Ð}{2}}$] | C£® | £¨1£¬e${\;}^{\frac{¦Ð}{2}}$£© | D£® | [e${\;}^{\frac{¦Ð}{2}}$£¬+¡Þ£© |
2£®Éèa=tan$\frac{¦Ð}{7}$£¬b=$\frac{¦Ð}{7}$£¬c=sin$\frac{¦Ð}{7}$£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
| A£® | c£¾b£¾a | B£® | b£¾c£¾a | C£® | a£¾c£¾b | D£® | a£¾b£¾c |
16£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨-c£¬0£©¡¢F2£¨c£¬0£©£¬PÊÇÍÖÔ²CÉÏÒ»µã£¬ÇÒ|PF2|=|F1F2|£¬Ö±ÏßPF1ÓëÔ²x2+y2=$\frac{{c}^{2}}{4}$ÏàÇУ¬ÔòÍÖÔ²µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
| A£® | $\frac{1}{3}$ | B£® | $\frac{\sqrt{3}-1}{2}$ | C£® | $\frac{\sqrt{2}-1}{2}$ | D£® | $\frac{\sqrt{3}}{4}$ |