题目内容
15.若命题“?x∈[0,$\frac{π}{2}$],不等式exsinx≥kx”是真命题,则实数k的取值范围是( )| A. | (-∞,1] | B. | (-∞,e${\;}^{\frac{π}{2}}$] | C. | (1,e${\;}^{\frac{π}{2}}$) | D. | [e${\;}^{\frac{π}{2}}$,+∞) |
分析 令f(x)=exsinx-kx,由于“?x∈[0,$\frac{π}{2}$],不等式exsinx≥kx”是真命题,可得f′(x)≥0恒成立,即可得出.
解答 解:令f(x)=exsinx-kx,∵“?x∈[0,$\frac{π}{2}$],不等式exsinx≥kx”是真命题,
∴f′(x)=ex(sinx+cosx)-k≥0恒成立,
∴k≤ex(sinx+cosx)的最小值,
令g(x)=ex(sinx+cosx),g′(x)=2excosx≥0,∴函数g(x)在x∈[0,$\frac{π}{2}$]单调递增,
∴g(x)≥g(0)=1,即k≤1.
故选:A.
点评 本题考查了利用导数研究函数的单调性极值与最值、复合命题真假的判定方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
7.若数列{an}满足:存在正整数T,对于任意正整数n都有an+T=an成立,则称数列{an}为周期数列,周期为T.已知数列{an}满足a1=m(m>0),${a}_{n+1}=\left\{\begin{array}{l}{{a}_{n}-1,{a}_{n}>1}\\{\frac{1}{{a}_{n}},0<{a}_{n}≤1}\end{array}\right.$,若a3=4,则m的所有可能取值为( )
| A. | {6,$\frac{5}{4}$} | B. | {6,$\frac{5}{4}$,$\frac{2}{5}$} | C. | {6,$\frac{5}{4}$,$\frac{1}{5}$} | D. | {6,$\frac{1}{5}$} |