题目内容

20.已知点F1、F2是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,O为坐标原点,点P在双曲线C的右支上,且满足|F1F2|=2|OP|,|PF1|≥3|PF2|,则双曲线C的离心率的取值范围为(  )
A.(1,+∞)B.[$\frac{\sqrt{10}}{2}$,+∞)C.(1,$\frac{\sqrt{10}}{2}$]D.(1,$\frac{5}{2}$]

分析 由直角三角形的判定定理可得△PF1F2为直角三角形,且PF1⊥PF2,运用双曲线的定义,可得|PF1|-|PF2|=2a,
又|PF1|≥3|PF2|,可得|PF2|≤a,再由勾股定理,即可得到c≤$\frac{\sqrt{10}}{2}$a,运用离心率公式,即可得到所求范围.

解答 解:由|F1F2|=2|OP|,可得|OP|=c,
即有△PF1F2为直角三角形,且PF1⊥PF2
可得|PF1|2+|PF2|2=|F1F2|2
由双曲线定义可得|PF1|-|PF2|=2a,
又|PF1|≥3|PF2|,可得|PF2|≤a,
即有(|PF2|+2a)2+|PF2|2=4c2
化为(|PF2|+a)2=2c2-a2
即有2c2-a2≤4a2
可得c≤$\frac{\sqrt{10}}{2}$a,
由e=$\frac{c}{a}$可得
1<e≤$\frac{\sqrt{10}}{2}$,
故选:C.

点评 本题考查双曲线的离心率的范围,注意运用双曲线的定义和直角三角形的性质,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网