题目内容

抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=90°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则
|
MN
|
|
AB
|
的最大值为(  )
A、
2
2
B、
3
2
C、1
D、
3
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:设|AF|=a,|BF|=b,由抛物线定义,2|MN|=a+b.再由勾股定理可得|AB|2=a2+b2,进而根据基本不等式,求得|AB|的范围,即可得到答案.
解答: 解:设|AF|=a,|BF|=b,
由抛物线定义,得AF|=|AQ|,|BF|=|BP|
在梯形ABPQ中,∴2|MN|=|AQ|+|BP|=a+b.
由勾股定理得,|AB|2=a2+b2配方得,
|AB|2=(a+b)2-2ab,
又ab≤(
a+b
2
)2

∴(a+b)2-2ab≥(a+b)2-2(
a+b
2
)2

得到|AB|≥
2
2
(a+b).
|
MN
|
|
AB
|
1
2
(a+b)
2
2
(a+b)
=
2
2
,即
|
MN
|
|
AB
|
的最大值为
2
2

故选A.
点评:本题主要考查抛物线的应用和解三角形的应用,考查基本不等式,考查了计算能力、分析问题和解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网