题目内容
若α为锐角,且sin(
-α)=
,则sinα= .
| π |
| 3 |
| 1 |
| 3 |
考点:两角和与差的正弦函数
专题:三角函数的求值
分析:由已知中α为锐角,且sin(
-α)=
,先求出cos(
-α),进而根据sinα=sin[
-(
-α)]=sin
cos(
-α)-cos
sin(
-α)得到答案.
| π |
| 3 |
| 1 |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
解答:
解:∵α为锐角,
∴
-α∈(-
,
),
又∵sin(
-α)=
>0,
故
-α∈(0,
).
∴cos(
-α)=
=
,
∴sinα=sin[
-(
-α)]=sin
cos(
-α)-cos
sin(
-α)=
×
-
×
=
,
故答案为:
∴
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
又∵sin(
| π |
| 3 |
| 1 |
| 3 |
故
| π |
| 3 |
| π |
| 3 |
∴cos(
| π |
| 3 |
1-(
|
2
| ||
| 3 |
∴sinα=sin[
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| ||
| 2 |
2
| ||
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
2
| ||
| 6 |
故答案为:
2
| ||
| 6 |
点评:本题考查的知识点是两角和与差的正弦函数,同角三角函数的基本关系,其中sinα=sin[
-(
-α)]的转化是解答的关键.
| π |
| 3 |
| π |
| 3 |
练习册系列答案
相关题目