题目内容
6.在平面直角坐标系xOy中,已知圆C:(x-3)2+y2=4,点A,B在圆C上,且$|{AB}|=2\sqrt{3}$,则$|{\overrightarrow{OA}+\overrightarrow{OB}}|$的最大值是( )| A. | 8 | B. | $4\sqrt{2}$ | C. | 4 | D. | $2\sqrt{2}$ |
分析 本题可利用AB中点M去研究,先通过坐标关系,将$\overrightarrow{OA}$+$\overrightarrow{OB}$转化为$\overrightarrow{OM}$,用根据AB=2$\sqrt{3}$得到M点的轨迹,由图形的几何特征,求出$\overrightarrow{OM}$模的最大值,得到本题答案.
解答 解:设A(x1,y1),B(x2,y2),AB中点M(x′,y′).
∵x′=$\frac{{x}_{1}+{x}_{2}}{2}$,y′=$\frac{{y}_{1}+{y}_{2}}{2}$
∴$\overrightarrow{OA}$+$\overrightarrow{OB}$=(x1+x2,y1+y2)=2$\overrightarrow{OM}$,
∵圆C:x2+y2-6x+5=0,
∴(x-3)2+y2=4,圆心C(3,0),半径CA=2.
∵点A,B在圆C上,AB=2$\sqrt{3}$,
∴CA2-CM2=($\frac{1}{2}$AB)2,
即CM=1.
点M在以C为圆心,半径r=1的圆上
∴OM≤OC+1=3+1=4.
∴|$\overrightarrow{OM}$|≤4,
∴|$\overrightarrow{OA}$+$\overrightarrow{OB}$|≤8.
故选:A.
点评 本题考查了数形结合思想和函数方程的思想,可利用AB中点M去研究,先通过坐标关系,将$\overrightarrow{OA}$+$\overrightarrow{OB}$转化为$\overrightarrow{OM}$,用根据AB=2$\sqrt{3}$得到M点的轨迹,由图形的几何特征,求出$\overrightarrow{OM}$模的最大值,得到本题答案.
| A. | 7 | B. | 8 | C. | 9 | D. | 10 |
| A. | 充分非必要条件 | B. | 必要非充分条件 | ||
| C. | 充要条件 | D. | 既非充分又非必要条件 |
| A. | 相离 | B. | 相交 | C. | 内切 | D. | 外切 |
| A. | $4\sqrt{3}π$ | B. | $6\sqrt{3}π$ | C. | $8\sqrt{3}π$ | D. | $12\sqrt{3}π$ |
| A. | {x|0<x<3} | B. | {1,2} | C. | {x|1≤x≤2} | D. | {x|x∈Z} |