题目内容
11.已知函数$f(x)=\left\{\begin{array}{l}-\sqrt{2}sinx,-1≤x≤0\\ tan({\frac{π}{4}x}),0<x≤1\end{array}\right.$,则$f({f({-\frac{π}{4}})})$=1.分析 由函数的解析式、特殊角的三角函数值先求出$f(-\frac{π}{4})$的值,再求出$f(f(-\frac{π}{4}))$的值.
解答 解:由题意知,$f(x)=\left\{\begin{array}{l}{-\sqrt{2}sinx,-1≤x≤0}\\{tan(\frac{π}{4}x),0<x≤1}\end{array}\right.$,
则$f(-\frac{π}{4})$=$-\sqrt{2}×sin(-\frac{π}{4})$=$-\sqrt{2}×(-\frac{\sqrt{2}}{2})$=1,
所以f(1)=$tan\frac{π}{4}$=1,即$f(f(-\frac{π}{4}))$=1,
故答案为:1.
点评 本题考查分段函数的函数值,对于多层函数值应从内到外依次求值,注意自变量的范围,属于基础题.
练习册系列答案
相关题目
6.将函数$f(x)=3sin({3x-\frac{π}{4}})$的图象向左平移$\frac{π}{4}$个单位,再向下平移4个单位,得到函数g(x)的图象,则函数f(x)的图象与函数g(x)的图象( )
| A. | 关于点(-2,0)对称 | B. | 关于点(0,-2)对称 | ||
| C. | 关于直线x=-2对称 | D. | 关于直线x=0对称 |
16.已知集合A={x∈N|x-2≤0},集合B={x|x2-x-2<0},则A∩B=( )
| A. | {1,2} | B. | {0,1} | C. | {0,1,2} | D. | {-1,0,1,2} |