题目内容

3.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=$\frac{6}{5}$.

分析 由题意可知:X所有可能取值为0,1,2,3.①8个顶点处的8个小正方体涂有3面,②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,
③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,④由以上可知:还剩下125-(8+36+54)=27个内部的小正方体的6个面都没有涂油漆,根据上面的分析即可得出其概率及X的分布列,利用数学期望的计算公式即可得出.

解答 解:由题意可知:X所有可能取值为0,1,2,3.
①8个顶点处的8个小正方体涂有3面,∴P(X=3)=$\frac{8}{125}$,
②每一条棱上除了两个顶点处的小正方体,还剩下3个,一共有3×12=36个小正方体涂有2面,∴P(X=2)=$\frac{36}{125}$,
③每个表面去掉四条棱上的16个小正方形,还剩下9个小正方形,因此一共有9×6=54个小正方体涂有一面,∴P(X=1)=$\frac{54}{125}$,
④由以上可知:还剩下125-(8+36+54)=27个内部的小正方体的6个面都没有涂油漆,∴P(X=0)=$\frac{27}{125}$.
因此E(X)=3×$\frac{8}{125}$+2×$\frac{36}{125}$+1$\frac{54}{125}$+0×$\frac{27}{125}$=$\frac{6}{5}$.
故答案为:$\frac{6}{5}$

点评 正确找出所涂油漆的面数的正方体的个数及古典概型的概率计算公式、分布列与数学期望是解题的关键,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网