题目内容

6.某工地决定建造一批房型为长方体、房高为2.5米的简易房,房的前后墙用2.5米高的彩色钢板,两侧墙用2.5米的高的复合钢板.两种钢板的价格都用长度来计算(即:钢板的高均为2.5米.用钢板的长度乘以单价就是这块钢板的价格).已知彩色钢板每米单价为450元.复合钢板每米单价为200元,房的地面不需另买材料,房顶用其它材料建造,每平方米材料费200元,每套房的材料费控制在32000元以内.
(1)设房前面墙的长为x(米),两侧墙的长为y(米),建造一套房所需材料费为P(元),试用x,y表示P;
(2)试求一套简易房面积S的最大值是多少?当S最大时,前面墙的长度应设计为多少米?

分析 (1)根据题意可分别求得前面墙,两侧墙和房顶的费用,三者相加即可求得P.
(2)利用P的表达式和基本不等式求得关于$\sqrt{S}$的不等式关系,求得$\sqrt{S}$的范围,以及等号成立条件求得x的值.

解答 解:(1)依题得,p=2x×450+2y×200+xy×200=900x+400y+200xy
即p=900x+400y+200xy;
(2)∵S=xy,∴p=900x+400y+200xy≥$2\sqrt{900×400S}$+200S=200S+1200$\sqrt{S}$,
又因为p≤3200,所以200S+1200$\sqrt{S}$≤3200,
解得-16≤$\sqrt{S}$≤10,
∵S>0,∴0<S≤100,当且仅当$\left\{\begin{array}{l}{900x=400y}\\{xy=100}\end{array}\right.$,即x=$\frac{20}{3}$时S取得最大值.
答:每套简易房面积S的最大值是100平方米,当S最大时前面墙的长度是$\frac{20}{3}$米.

点评 本题主要考查了基本不等式在最值问题中的应用.考查了学生分析问题和解决实际问题的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网