题目内容
类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=
,C(x)=
,下面正确的运算公式是( )
①S(x+y)=S(x)C(y)+C(x)S(y)
②S(x-y)=S(x)C(y)-C(x)S(y)
③2S(x+y)=S(x)C(y)+C(x)S(y)
④2S(x-y)=S(x)C(y)-C(x)S(y)
| ex-e-x |
| 2 |
| ex+e-x |
| 2 |
①S(x+y)=S(x)C(y)+C(x)S(y)
②S(x-y)=S(x)C(y)-C(x)S(y)
③2S(x+y)=S(x)C(y)+C(x)S(y)
④2S(x-y)=S(x)C(y)-C(x)S(y)
| A、①② | B、③④ | C、①④ | D、②③ |
考点:导数的运算
专题:推理和证明
分析:写出“两角和与差的正余弦公式”的形式,写出类比结论.
解答:
解S(x)=
,C(x)=
,
∵“两角和与差的正余弦公式”的形式是
sin(x+y)=sinxcosy+cosxsiny
sin(x-y)=sinxcosy-cosxsiny
cos(x+y)=cosxcosy-sinxsiny
cos(x-y)=cosxcosy+sinxsiny
对于S(x)=
,C(x)=
,
对于①S(x+y)=S(x)C(y)+C(x)S(y)
②S(x-y)=S(x)C(y)-C(x)S(y)
③2S(x+y)=S(x)C(y)+C(x)S(y)
④2S(x-y)=S(x)C(y)-C(x)S(y)
于是类比可以得到答案,
对于S(x+y)=
,
S(x)C(y)+C(x)S(y)=
•
+
•
=
(ex+y-e-x-y)
故①正确,③错误,
同理可到②正确,④错误,
故①②正确.
故选:A
| ex-e-x |
| 2 |
| ex+e-x |
| 2 |
∵“两角和与差的正余弦公式”的形式是
sin(x+y)=sinxcosy+cosxsiny
sin(x-y)=sinxcosy-cosxsiny
cos(x+y)=cosxcosy-sinxsiny
cos(x-y)=cosxcosy+sinxsiny
对于S(x)=
| ex-e-x |
| 2 |
| ex+e-x |
| 2 |
对于①S(x+y)=S(x)C(y)+C(x)S(y)
②S(x-y)=S(x)C(y)-C(x)S(y)
③2S(x+y)=S(x)C(y)+C(x)S(y)
④2S(x-y)=S(x)C(y)-C(x)S(y)
于是类比可以得到答案,
对于S(x+y)=
| ex+y-e-x-y |
| 2 |
S(x)C(y)+C(x)S(y)=
| ex-e-x |
| 2 |
| ey+e-y |
| 2 |
| ey-e-y |
| 2 |
| ex+e-x |
| 2 |
| 1 |
| 2 |
故①正确,③错误,
同理可到②正确,④错误,
故①②正确.
故选:A
点评:本题考查利用类比推理从形式上写出类比结论.写类比结论时:先找类比对象,再找类比元素.
练习册系列答案
相关题目
若a>0>b,则下列不等式中成立的是( )
A、
| ||||
B、
| ||||
| C、|a|>|b| | ||||
| D、a2>b2 |
已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,则满足f(2-x2)<f(x)的实数x的取值范围为( )
| A、(1,+∞) |
| B、(-∞,-2) |
| C、(-∞,-2)∪(1,+∞) |
| D、(-2,1) |