题目内容

已知函数f(x)=
2
cos(x-
π
12
),x∈R.
(1)求f(
π
3
)及f(-
π
6
)的值;
(2)若cosθ=
3
5
,θ∈(
2
,2π),求f(θ-
π
6
)和f(2θ+
π
3
)的值.
考点:三角函数的恒等变换及化简求值
专题:计算题,三角函数的求值
分析:(1)将x=
π
3
及-
π
6
代入,结合特殊角的三角函数值,可得答案;
(2)根据cosθ=
3
5
,θ∈(
2
,2π),求出sinθ,代入两角差的余弦公式,可得答案.
解答: 解:(1)f(
π
3
)=
2
cos(
π
3
-
π
12
)=
2
cos
π
4
=
2
×
2
2
=1,
f(-
π
6
)=
2
cos(-
π
6
-
π
12
)=
2
cos(-
π
4
)=
2
×
2
2
=1,
(2)(2)∵cosθ=
3
5
,θ∈(
2
,2π),
∴sinθ=-
1-cos2θ
=-
4
5

∴f(θ-
π
6
)=
2
cos(θ-
π
4
)=
2
(cosθcos
π
4
+sinθsin
π
4
)=-
1
5

f(2θ+
π
3
)=
2
cos(2θ+
π
4
)=cos2θ-sin2θ=2cos2θ-1+2sinθcosθ=-
31
25
点评:本题考查的知识点是两角和与差的余弦公式,特殊角的三角函数值,难度不大,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网