题目内容

若直线ax+by+c=0(ab≠0)在两坐标轴上的截距相等,则a,b,c满足的条件是(  )
A、a=b
B、|a|=|b|
C、c=0或a=b
D、c=0或|a|=|b|
考点:直线的截距式方程
专题:直线与圆
分析:当c=0时,直线ax+by+c=0(ab≠0)过原点,在两坐标轴上的截距相等,当c≠0时,直线在两坐标轴上的截距分别为-
c
b
和-
c
a
,由题意可得-
c
b
=-
c
a
,故a=b,由此得出结论.
解答: 解:当c=0时,直线ax+by+c=0(ab≠0)过原点,在两坐标轴上的截距相等.
当c≠0时,直线在两坐标轴上的截距分别为-
c
b
和-
c
a
,由题意可得-
c
b
=-
c
a
,故a=b.
综上,当c=0或c≠0且a=b时,直线ax+by+c=0(ab≠0)在两坐标轴上的截距相等,
故选C.
点评:本题主要考查直线的一般式方程,直线在两坐标轴上的截距的定义,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网