题目内容

一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:
转速x(转/秒)1614128
每小时生产有缺陷的零件数y(件)11985
(1)画出散点图;    (2)如果y与x有线性相关的关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围内?
参考公式:线性回归方程系数公式开始
b
=
n
i=1
xiyi-n•
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
x.
考点:回归分析的初步应用
专题:应用题,概率与统计
分析:(1)利用所给的数据画出散点图;
(2)先做出横标和纵标的平均数,做出利用最小二乘法求线性回归方程的系数的量,做出系数,求出a,写出线性回归方程.
(3)根据上一问做出的线性回归方程,使得函数值小于或等于10,解出不等式.
解答: 解:(1)画出散点图,如图所示:
(2)
.
x
=12.5,
.
y
=8.25,∴b=
438-4×12.5×8.25
660-4×12.52
≈0.7286,
a=-0.8571
∴回归直线方程为:y=0.7286x-0.8571;
(3)要使y≤10,则0.728 6x-0.857 4≤10,x≤14.901 9.故机器的转速应控制在14.9转/秒以下.
点评:本题考查线性回归分析,考查线性回归方程,考查线性回归方程的应用,考查不等式的解法,是一个综合题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网