题目内容
一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:
(1)画出散点图; (2)如果y与x有线性相关的关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围内?
参考公式:线性回归方程系数公式开始
=
,
=
-
x.
| 转速x(转/秒) | 16 | 14 | 12 | 8 |
| 每小时生产有缺陷的零件数y(件) | 11 | 9 | 8 | 5 |
(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围内?
参考公式:线性回归方程系数公式开始
| b |
| |||||||
|
| a |
. |
| y |
| b |
考点:回归分析的初步应用
专题:应用题,概率与统计
分析:(1)利用所给的数据画出散点图;
(2)先做出横标和纵标的平均数,做出利用最小二乘法求线性回归方程的系数的量,做出系数,求出a,写出线性回归方程.
(3)根据上一问做出的线性回归方程,使得函数值小于或等于10,解出不等式.
(2)先做出横标和纵标的平均数,做出利用最小二乘法求线性回归方程的系数的量,做出系数,求出a,写出线性回归方程.
(3)根据上一问做出的线性回归方程,使得函数值小于或等于10,解出不等式.
解答:
解:(1)画出散点图,如图所示:
(2)
=12.5,
=8.25,∴b=
≈0.7286,
a=-0.8571
∴回归直线方程为:y=0.7286x-0.8571;
(3)要使y≤10,则0.728 6x-0.857 4≤10,x≤14.901 9.故机器的转速应控制在14.9转/秒以下.
(2)
. |
| x |
. |
| y |
| 438-4×12.5×8.25 |
| 660-4×12.52 |
a=-0.8571
∴回归直线方程为:y=0.7286x-0.8571;
(3)要使y≤10,则0.728 6x-0.857 4≤10,x≤14.901 9.故机器的转速应控制在14.9转/秒以下.
点评:本题考查线性回归分析,考查线性回归方程,考查线性回归方程的应用,考查不等式的解法,是一个综合题目.
练习册系列答案
相关题目
已知函数y=
(x>0)上两点A1(x1,y1)和A2(x2,y2),其中x2>x1.过A1,A2的直线l与x轴交于A3(x3,0),那么( )
| 1 |
| x |
A、x1,
| ||
B、x1,
| ||
| C、x1,x3,x2成等差数列 | ||
| D、x1,x2,x3成等比数列 |
12件同类产品中,有10件是正品,2件是次品,从中任意抽出3件,与“抽得1件次品2件正品”互斥而不对立的事件是( )
| A、抽得3件正品 |
| B、抽得至少有1件正品 |
| C、抽得至少有1件次品 |
| D、抽得3件正品或2件次品1件正品 |