ÌâÄ¿ÄÚÈÝ

1£®ÒÑÖªÍÖÔ²Cn£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=n£¨a£¾b£¾1£¬n¡ÊN*£©£¬F1£¬F2ÊÇÍÖÔ²C4µÄ½¹µã£¬A£¨2£¬$\sqrt{2}$£©ÊÇÍÖÔ²C4ÉÏÒ»µã£¬ÇÒ$\overrightarrow{A{F}_{2}}$?$\overrightarrow{{F}_{1}{F}_{2}}$=0£»
£¨1£©ÇóCnµÄÀëÐÄÂʲ¢Çó³öC1µÄ·½³Ì£»
£¨2£©PΪÍÖÔ²C2ÉÏÈÎÒâÒ»µã£¬Ö±ÏßPF1½»ÍÖÔ²C4ÓÚµãE£¬F£¬Ö±ÏßPF2½»ÍÖÔ²C4ÓÚµãM£¬N£¬ÉèÖ±ÏßPF1µÄбÂÊΪk1£¬Ö±ÏßPF2µÄбÂÊΪk2£»
£¨i£©ÇóÖ¤£ºk1k2=-$\frac{1}{2}$    
£¨ii£©Çó|MN|?|EF|µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÍÖÔ²C4µÄ·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=4£¬¼´£º$\frac{{x}^{2}}{4{a}^{2}}+\frac{{y}^{2}}{4{b}^{2}}$=1£®²»·ÁÉèc2=a2-b2£¬ÔòF2£¨2c£¬0£©£®ÓÉ$\overrightarrow{A{F}_{2}}$?$\overrightarrow{{F}_{1}{F}_{2}}$=0£¬¿ÉµÃ$\overrightarrow{A{F}_{2}}$¡Í$\overrightarrow{{F}_{1}{F}_{2}}$£®2c=2£¬$\frac{£¨2b£©^{2}}{2a}$=$\frac{2{b}^{2}}{a}$=$\sqrt{2}$£¬2b4=a2=b2+1£¬½â³ö¼´¿ÉµÃ³ö£®
£¨2£©£¨i£©ÍÖÔ²C2µÄ·½³ÌΪ£º$\frac{{x}^{2}}{2}$+y2=2 ¼´£º$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1£®ÍÖÔ²C4µÄ·½³ÌΪ£º$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}$=1£®ÉèP£¨x0£¬y0£©£¬ÓÉPÔÚÍÖÔ²C2ÉÏ£¬¿ÉµÃy02=$\frac{1}{2}$£¨4-x02£©£®ÔÙÀûÓÃбÂʼÆË㹫ʽ¼´¿ÉÖ¤Ã÷k1k2Ϊ¶¨Öµ£®
£¨ii£©ÉèÖ±ÏßPF1µÄ·½³ÌΪ£ºy=k1£¨x+2£©Ö±ÏßPF2µÄ·½³ÌΪ£ºy=k2£¨x-2£©£¬ÓëÍÖÔ²·½³ÌÁªÁ¢ÏûÔªÕûÀíµÃ£º£¨2k12+1£©x2+8k1x+8k12-8=0£¬ÉèE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¿ÉµÃ|EF|=$\sqrt{1+{k}_{1}^{2}}$$•\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$£¬|MN|£®ÀûÓã¨i£©µÄ½áÂÛ´úÈë|EF|?|MN|£¬»¯¼ò¼´¿ÉÖ¤Ã÷£®

½â´ð ½â£º£¨1£©½â£ºÍÖÔ²C4µÄ·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=4£¬¼´£º$\frac{{x}^{2}}{4{a}^{2}}+\frac{{y}^{2}}{4{b}^{2}}$=1£®
²»·ÁÉèc2=a2-b2   ÔòF2£¨2c£¬0£©£®
¡ß$\overrightarrow{A{F}_{2}}$?$\overrightarrow{{F}_{1}{F}_{2}}$=0£¬¡à$\overrightarrow{A{F}_{2}}$¡Í$\overrightarrow{{F}_{1}{F}_{2}}$£®
ÓÚÊÇ2c=2£¬$\frac{£¨2b£©^{2}}{2a}$=$\frac{2{b}^{2}}{a}$=$\sqrt{2}$£¬2b4=a2=b2+1£¬
¡à2b4-b2-1=0£¬
 £¨2b2+1£©£¨b2-1£©=0£¬
¡àb2=1£¬a2=2£®
¡àÍÖÔ²CnµÄ·½³ÌΪ£º$\frac{x2}{2}$+y2=n£®
¡àe2=$\frac{2{n}^{2}-{n}^{2}}{2{n}^{2}}$=$\frac{1}{2}$£¬¡àe=$\frac{\sqrt{2}}{2}$£®
ÍÖÔ²C1µÄ·½³ÌΪ£º$\frac{x2}{2}$+y2=1£®
£¨2£©£¨i£©Ö¤Ã÷£ºÍÖÔ²C2µÄ·½³ÌΪ£º$\frac{{x}^{2}}{2}$+y2=2   ¼´£º$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1£®
ÍÖÔ²C4µÄ·½³ÌΪ£º$\frac{{x}^{2}}{2}$+y2=4   ¼´£º$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}$=1£®
¡àF1£¨-2£¬0£©£¬F2£¨2£¬0£©£¬ÉèP£¨x0£¬y0£©£¬
¡ßPÔÚÍÖÔ²C2ÉÏ£¬¡à$\frac{{x}_{0}^{2}}{4}+\frac{{y}_{0}^{2}}{2}$=1£¬¼´y02=$\frac{1}{2}$£¨4-x02£©£®
¡àk1k2=$\frac{{y}_{0}}{{x}_{0}+2}$•$\frac{{y}_{0}}{{x}_{0}-2}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-4}$=$\frac{\frac{1}{2}£¨4-{x}_{0}^{2}£©}{{x}_{0}^{2}-4}$=-$\frac{1}{2}$£®
£¨ii£©ÉèÖ±ÏßPF1µÄ·½³ÌΪ£ºy=k1£¨x+2£©Ö±ÏßPF2µÄ·½³ÌΪ£ºy=k2£¨x-2£©£¬
ÁªÁ¢·½³Ì×飺$\left\{\begin{array}{l}{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\\{y={k}_{1}£¨x+2£©}\end{array}\right.$  ÏûÔªÕûÀíµÃ£º£¨2k12+1£©x2+8k1x+8k12-8=0¡­¢Ù
ÉèE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬Ôòx1£¬x2ÊÇ·½³Ì¢ÙµÄÁ½¸ö½â£¬ÓÉΤ´ï¶¨ÀíµÃ£º
x1+x2=-$\frac{8{k}_{1}}{2{k}_{1}^{2}+1}$£¬x1x2=$\frac{8{k}_{1}^{2}-8}{2{k}_{1}^{2}+1}$£®
¡à|EF|=$\sqrt{1+{k}_{1}^{2}}$$•\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\frac{4\sqrt{2}£¨1+{k}_{1}^{2}£©}{2{k}_{1}^{2}+1}$£®
ͬÀí£º|MN|=$\frac{4\sqrt{2}£¨1+{k}_{2}^{2}£©}{2{k}_{2}^{2}+1}$£®
¡à|EF|?|MN|=$\frac{4\sqrt{2}£¨1+{k}_{1}^{2}£©}{2{k}_{1}^{2}+1}$•$\frac{4\sqrt{2}£¨1+{k}_{2}^{2}£©}{2{k}_{2}^{2}+1}$=32¡Á$\frac{{k}_{1}^{2}{k}_{2}^{2}+{k}_{1}^{2}+{k}_{2}^{2}+1}{4{k}_{1}^{2}{k}_{2}^{2}+2{k}_{1}^{2}+2{k}_{2}^{2}+1}$=32¡Á$\frac{£¨-\frac{1}{2}£©^{2}+{k}_{1}^{2}+{k}_{2}^{2}+1}{4¡Á£¨-\frac{1}{2}£©^{2}+2{k}_{1}^{2}+2{k}_{2}^{2}+1}$=$16+\frac{4}{{k}_{1}^{2}+{k}_{2}^{2}+1}$
=16+$\frac{4}{{k}_{1}^{2}+\frac{1}{4{k}_{1}^{2}}+1}$¡Ü18£¬
ÓÖ|EF|?|MN|£¾0£®
¡à|EF|?|MN|¡Ê£¨16£¬18]£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢»ù±¾²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø