题目内容
15.设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=$\frac{π}{8}$.(1)求φ;
(2)求y=f(x)的单调减区间.
分析 (1)由题意可得$sin(\frac{π}{4}+φ)=±1$,即$\frac{π}{4}$+$φ=kπ+\frac{π}{2}(k∈Z)$,再由条件即可得到所求值;
(2)由正弦函数的单调减区间,解不等式可得所求区间.
解答 解:(1)由题意知y=f(x)图象的一条对称轴是直线$x=\frac{π}{8}$.
∴$sin(\frac{π}{4}+φ)=±1$,…(3分)
∴即$\frac{π}{4}$+$φ=kπ+\frac{π}{2}(k∈Z)$,…(6分)
又-π<φ<0,∴$φ=-\frac{3π}{4}$…(7分)
(2)由(1)知$f(x)=sin(2x-\frac{3π}{4})$,
令$\frac{π}{2}+2kπ≤2x-\frac{3π}{4}≤\frac{3π}{2}+2kπ$…(10分)
解得$\frac{5π}{8}+kπ≤x≤\frac{9π}{8}+kπ$(k∈Z)…(12分)
所以函数y=f(x)的单调递减区间为$[\frac{5π}{8}+kπ,\frac{9π}{8}+kπ](k∈Z)$…(14分)
点评 本题考查正弦函数图象和性质,考查运算能力,属于中档题.
练习册系列答案
相关题目
5.函数f(x)=$\frac{1}{\sqrt{2-x}}$的定义域为( )
| A. | {x|x<2} | B. | {x|x≤2} | C. | {x|x>2} | D. | {x|x≠2} |
6.实数x、y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{y+1≥0}\\{x+y+1≤0}\end{array}\right.$,那么μ=22x-y+2的最大值为( )
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
3.某中学有一调查小组为了解本校学生假期中白天在家时间的情况,从全校学生中抽取120人,统计他们平均每天在家的时间(在家时间在4小时以上的就认为具有“宅”属性,否则就认为不具有“宅”属性)
(1)请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“是否具有‘宅’属性与性别有关?”
(2)采用分层抽样的方法从具有“宅”属性的学生里抽取一个6人的样本,其中男生和女生各多少人?从6人中随机选取3人做进一步的调查,求选取的3人至少有1名女生的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
| 具有“宅”属性 | 不具有“宅”属性 | 总计 | |
| 男生 | 20 | 50 | 70 |
| 女生 | 10 | 40 | 50 |
| 总计 | 30 | 90 | 120 |
(2)采用分层抽样的方法从具有“宅”属性的学生里抽取一个6人的样本,其中男生和女生各多少人?从6人中随机选取3人做进一步的调查,求选取的3人至少有1名女生的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 5.635 | 7.879 | 10.828 |
7.已知函数f(x)满足f(3x)=x,则f(2)=( )
| A. | log32 | B. | log23 | C. | ln2 | D. | ln3 |