题目内容
16.数列{an}满足an+1+2=m(an+2)(an≠-2,m为常数),若a3,a4,a5,a6∈{-18,-6,-2,6,30},则a1=-3或126.分析 由已知得到a3,+2,a4+2,a5,+2,a6+2为等比数列,根据等比数列的特征得到对应的项,由此求得结果.
解答 解:因为-数列{an}满足an+1+2=m(an+2),
所以数列数列{an+2}是等比数列,并且首项为a1+2,公比为m,
所以a3,+2,a4+2,a5,+2,a6+2∈{-16,-4,0,8,32},
所以a3,+2,a4+2,a5,+2,a6+2分别是-4,8,-16,32或者32,-16,8,-4;
所以a1+2=$\frac{{a}_{3}+2}{(-2)^{2}}=\frac{-4}{4}$=-1,或者a1+2=$\frac{{a}_{3}+2}{(-\frac{1}{2})^{2}}=\frac{32}{\frac{1}{4}}$=128,
所以a1=-3或者126;
故答案为:-3或126.
点评 本题考查了等比数列定义的运用;关键是发现a3,+2,a4+2,a5,+2,a6+2为等比数列.
练习册系列答案
相关题目
6.若3cos($\frac{π}{2}$-θ)+cos(π+θ)=0,则cos2θ的值为( )
| A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | -$\frac{3}{5}$ |
8.若抛物线y2=4x上的点P到焦点的距离是10,则P的坐标( )
| A. | (9,6) | B. | (9,6)或(9,-6) | C. | (9,-6) | D. | (6,-6) |