题目内容
13.根据下列5个图形及相应点的个数的变化规律,试猜测第10个图中有91个点.分析 对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
解答 解:通过观察得:
图1有:1×1-0=1个点,
图2有:2×2-1=3个点,
图3有:3×3-2=7个点,
图4有:4×4-3=13个点,
图5有:5×5-4=21个点,
…,
所以第10图中的点数为:10×10-19=91.
故答案为:91
点评 此题考查的知识点是图形数字变化类问题,解题的关键是通过观察图形分析总结出规律,再按规律求解.
练习册系列答案
相关题目
5.已知抛物线C:y=$\frac{1}{4}$x2的焦点为F,P是抛物线在第一象限上的一点,且点P到抛物线到对称轴的距离为点P到抛物线准线的距离相等,则以|PF|的直径的圆的标准方程为( )
| A. | (x-1)2+(y-1)2=1 | B. | (x+1)2+(y-1)2=1 | C. | (x-1)2+(y+1)2=1 | D. | (x+1)2+(y+1)2=1 |
6.设集合A={x|kx2+4x+4=0,x∈R}.若集合A有且只有两个子集,则下列关于实数k的式子成立的是( )
| A. | k=1 | B. | k=0 | C. | k=0,或k=1 | D. | D.k<1 |
1.为了分析某个高中学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成绩,可见该生的物理成绩y与数学成绩x是线性相关的:
(1)求物理成绩y与数学成绩x的回归直线方程y=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$
参考数据:$\sum_{i=1}^{n}{x}_{i}{y}_{i}$=70497,$\sum_{i=1}^{n}{x}_{i}^{2}$=70994.
| 数学 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
| 物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
(2)若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$
参考数据:$\sum_{i=1}^{n}{x}_{i}{y}_{i}$=70497,$\sum_{i=1}^{n}{x}_{i}^{2}$=70994.
18.某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为( )
| A. | $\frac{9}{16}$ | B. | $\frac{9}{32}$ | C. | $\frac{7}{16}$ | D. | $\frac{23}{32}$ |