题目内容

11.如果P1,P2,…,Pn是抛物线C:y2=4x上的点,它们的横坐标依次为x1,x2,…,xn,F是抛物线C的焦点,若x1+x2+…+xn=10,则|P1F|+|P2F|+…+|PnF|=(  )
A.n+10B.n+20C.2n+10D.2n+20

分析 由抛物线性质得|PnF|=${x}_{n}+\frac{p}{2}$=xn+1,由此能求出结果.

解答 解:∵P1,P2,…,Pn是抛物线C:y2=4x上的点,
它们的横坐标依次为x1,x2,…,xn,F是抛物线C的焦点,
x1+x2+…+xn=10,
∴|P1F|+|P2F|+…+|PnF|
=(x1+1)+(x2+1)+…+(xn+1)
=x1+x2+…+xn+n
=n+10.
故选:A.

点评 本题考查抛物线中一组线段和的求法,是中档题,解题时要认真审题,注意抛物线的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网