题目内容

8.如图,测量河对岸的旗杆高AB时,选与旗杆底B在同一水平面内的两个测点C与D.测得∠BCD=75°,∠BDC=60°,CD=2米,并在点C测得旗杆顶A的仰角为60°,则旗杆高AB为(  )
A.10米B.2$\sqrt{6}$米C.$2\sqrt{3}$米D.$3\sqrt{2}$米

分析 在△CBD中根据三角形的内角和定理,求出∠CBD=180°-∠BCD-∠BDC=45°,从而利用正弦定理求出BC.然后在Rt△ABC中,根据三角函数的定义加以计算,可得旗杆AB的高度.

解答 解:∵△BCD中,∠BCD=75°,∠BDC=60°,
∴∠CBD=180°-∠BCD-∠BDC=45°,
在△CBD中,CD=2米,根据正弦定理可得BC=$\frac{CD•sin∠BDC}{sin∠CBD}$=$\sqrt{6}$米,
∵Rt△ABC中,∠ACB=60°,
∴AB=BC•tan∠ACB=$\sqrt{6}$•tan60°=3$\sqrt{2}$,即旗杆高,3$\sqrt{2}$米.
故选:D.

点评 本题给出实际应用问题,求棋杆AB的高度.着重考查了三角形内角和定理、利用正弦定理解三角形和三角函数的定义等知识,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网