题目内容
8.| A. | 10米 | B. | 2$\sqrt{6}$米 | C. | $2\sqrt{3}$米 | D. | $3\sqrt{2}$米 |
分析 在△CBD中根据三角形的内角和定理,求出∠CBD=180°-∠BCD-∠BDC=45°,从而利用正弦定理求出BC.然后在Rt△ABC中,根据三角函数的定义加以计算,可得旗杆AB的高度.
解答 解:∵△BCD中,∠BCD=75°,∠BDC=60°,
∴∠CBD=180°-∠BCD-∠BDC=45°,
在△CBD中,CD=2米,根据正弦定理可得BC=$\frac{CD•sin∠BDC}{sin∠CBD}$=$\sqrt{6}$米,
∵Rt△ABC中,∠ACB=60°,
∴AB=BC•tan∠ACB=$\sqrt{6}$•tan60°=3$\sqrt{2}$,即旗杆高,3$\sqrt{2}$米.
故选:D.
点评 本题给出实际应用问题,求棋杆AB的高度.着重考查了三角形内角和定理、利用正弦定理解三角形和三角函数的定义等知识,属于中档题.
练习册系列答案
相关题目
2.若圆心为(3,1)的圆与x轴相切,则该圆的方程是( )
| A. | x2+y2-2x-6y+9=0 | B. | x2+y2+6x+2y+9=0 | C. | x2+y2-6x-2y+9=0 | D. | x2+y2+2x+6y+9=0 |
16.函数f(x)=3sin2x+2sinxcosx+cos2x-2的单调递减区间是( )
| A. | $[kπ+\frac{3π}{8},kπ+\frac{7π}{8}],k∈Z$ | B. | $[2kπ+\frac{3π}{8},2kπ+\frac{7π}{8}],k∈Z$ | ||
| C. | $[2kπ-\frac{π}{8},2kπ+\frac{3π}{8}],k∈Z$ | D. | $[kπ-\frac{π}{8},kπ+\frac{3π}{8}],k∈Z$ |
13.
一个几何体的三视图是如图所示的边长为2的正方形,其中P,Q,S,T为各边的中点,则此几何体的表面积是( )
| A. | 21 | B. | $\frac{43}{2}$ | C. | $\frac{45}{2}$ | D. | 23 |