题目内容
函数y=
x3-x的单调递减区间为( )
| 1 |
| 3 |
| A、[-1,1] |
| B、[0,1] |
| C、[1,+∞) |
| D、[0,+∞) |
考点:利用导数研究函数的单调性
专题:导数的概念及应用,导数的综合应用
分析:先求出函数的导数,令导函数小于0,解不等式求出即可.
解答:
解:∵y′=x2-1,
令y′≤0,解得:-1≤x≤1,
故选:A.
令y′≤0,解得:-1≤x≤1,
故选:A.
点评:本题考察了函数的单调性,导数的应用,是一道基础题.
练习册系列答案
相关题目
若方程
+
=1表示双曲线,则k的取值范围是( )
| x2 |
| k+1 |
| y2 |
| 2k-4 |
| A、k>2 |
| B、-1<k<0 |
| C、0<k<2 |
| D、-1<k<2 |
对于集合A,若满足:a∈A,且a-1∉A,a+1∉A,则称a为集合A的“孤立元素”,则集合M={1,2,3,…,10}的无“孤立元素”的含4个元素的子集个数共有( )
| A、28 | B、36 | C、49 | D、175 |
设复数z1=1+i,z2=2+bi,若
为纯虚数,则实数b=( )
| z2 |
| z1 |
| A、2 | B、1 | C、-1 | D、-2 |
从甲袋中取出一个红球的概率是
,从乙袋中取出一个红球的概率是
,从两袋中各取出一个球,则概率等于
的是( )
| 1 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| A、两个球不都是红球 |
| B、两个球都是红球 |
| C、两个球中至少有一个球是红球 |
| D、两个球中恰有一个球是红球 |
已知平面向量
=(4,1),
=(x,-2),且2
+
与3
-4
平行,则x=( )
| a |
| b |
| a |
| b |
| a |
| b |
| A、8 | ||
B、-
| ||
| C、-8 | ||
D、
|
设α表示平面,a、b、l表示直线,给出下列命题,
①
⇒l⊥α;②
⇒b⊥α;③
⇒a⊥α;④直线l与平面α内无数条直线垂直,则l⊥α.
其中正确结论的个数为( )
①
|
|
|
其中正确结论的个数为( )
| A、0 | B、1 | C、2 | D、3 |
若方程
+
=1表示的图形是双曲线,则k的取值范围为( )
| x2 |
| 2-k |
| y2 |
| k-1 |
| A、k>2或k<1 |
| B、1<k<2 |
| C、-2<k<1 |
| D、-1<k<2 |