题目内容

8.正项等比数列{an}中,a6=a5+2a4,若存在两项am,an使得$\sqrt{{a_m}{a_n}}$=4a1,则$\frac{1}{m}$+$\frac{2}{n}$的最小值是(  )
A.$\frac{{3+2\sqrt{2}}}{6}$B.1C.$\frac{11}{5}$D.$\frac{5}{4}$

分析 利用等比数列的通项公式可得q,进而点到m+n=6,再利用“乘1法”与基本不等式的性质即可得出.

解答 解:设正项等比数列{an}的公比为q>0.
∵$\sqrt{{a_m}{a_n}}=4{a_1}$,且a6=a5+2a4
∴$\sqrt{{{a}_{1}q}^{m-1}{{•a}_{1}q}^{n-1}}$=4a1,a1q5=a1q4+2a1q3
化为${q}^{\frac{m+n-2}{2}}$=4,q2-q-2=0,q>0.
解得q=2,∴$\frac{m+n-2}{2}$=2,即m+n=6,
∴$\frac{1}{m}$+$\frac{2}{n}$=$\frac{1}{6}$(m+n)($\frac{1}{m}$+$\frac{2}{n}$)
=$\frac{1}{2}$+$\frac{1}{6}$($\frac{2m}{n}$+$\frac{n}{m}$)
≥$\frac{1}{2}$+$\frac{1}{3}$$\sqrt{\frac{2m}{n}•\frac{n}{m}}$=$\frac{1}{2}$+$\frac{\sqrt{2}}{3}$
=$\frac{3+2\sqrt{2}}{6}$,
故选:A.

点评 本题考查了等比数列的通项公式、“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网