题目内容
已知等差数列{an}中,a2=5,a6=13.
(1)求等差数列的通项公式an;
(2)设bn=
,求数列{bn}的前n项和Sn;
(3)令cn=(n+1)Sn•3n,求数列{cn}的前n项和Tn.
(1)求等差数列的通项公式an;
(2)设bn=
| 2 |
| n(an+1) |
(3)令cn=(n+1)Sn•3n,求数列{cn}的前n项和Tn.
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)设出等差数列的首项和公差,由已知列方程组求解首项和公差,则等差数列的通项公式可求;
(2)把an代入bn=
,整理后利用裂项相消法求数列{bn}的前n项和Sn;
(3)把(2)中求得的Sn代入cn=(n+1)Sn•3n,整理后利用错位相减法数列{cn}的前n项和Tn.
(2)把an代入bn=
| 2 |
| n(an+1) |
(3)把(2)中求得的Sn代入cn=(n+1)Sn•3n,整理后利用错位相减法数列{cn}的前n项和Tn.
解答:
解:(1)设等差数列{an}的公差为d,
由
,得
,解得
.
∴等差数列{an}的通项公式an=a1+(n-1)d=3+(n-1)×2=2n+1;
(2)∵an=2n+1,
∴bn=
=
=
=
=(
-
),
∴Sn=b1+b2+b3+…+bn-1+bn
=(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)
=1-
+
-
+
-
+…+
-
+
-
=1-
=
;
(3)∵cn=(n+1)Sn•3n
=(n+1)•
3n=n•3n,
∴Tn=c1+c2+c3+…+cn-1+cn=1×31+2×32+3×33+…+(n-1)×3n-1+n×3n ①
∴3Tn=1×32+2×33+3×34+…+(n-1)×3n+n×3n+1 ②
①-②得:Tn-3Tn=1×31+1×32+1×33+…+1×3n-n×3n+1,
即-2Tn=31+32+33+…+3n-n×3n+1=
-n×3n+1,
∴Tn=
(2n-1)•3n+1+
.
由
|
|
|
∴等差数列{an}的通项公式an=a1+(n-1)d=3+(n-1)×2=2n+1;
(2)∵an=2n+1,
∴bn=
| 2 |
| n(an+1) |
| 2 |
| n(2n+1+1) |
| 2 |
| n(2n+2) |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=b1+b2+b3+…+bn-1+bn
=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
(3)∵cn=(n+1)Sn•3n
=(n+1)•
| n |
| (n+1) |
∴Tn=c1+c2+c3+…+cn-1+cn=1×31+2×32+3×33+…+(n-1)×3n-1+n×3n ①
∴3Tn=1×32+2×33+3×34+…+(n-1)×3n+n×3n+1 ②
①-②得:Tn-3Tn=1×31+1×32+1×33+…+1×3n-n×3n+1,
即-2Tn=31+32+33+…+3n-n×3n+1=
| 3(1-3n) |
| 1-3 |
∴Tn=
| 1 |
| 4 |
| 3 |
| 4 |
点评:本题考查等差数列的通项公式得求法,考查了裂项相消法和错位相减法求数列的和,是中档题.
练习册系列答案
相关题目