题目内容
4.各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N+,6Sn=an2+3an+2.(1)求数列{an}的通项公式;
(2)记bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求数列{bn}的前n项和Tn.
分析 (1)由6Sn=an2+3an+2,可得n≥2时,6Sn-1=${a}_{n-1}^{2}$+3an-1+2,相减可得:(an+an-1)(an-an-1-3)=0,由an+an-1>0,an-an-1=3,利用等差数列的通项公式即可得出.
(2)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$,利用“裂项求和方法”即可得出.
解答 解:(1)由6Sn=an2+3an+2,可得n≥2时,6Sn-1=${a}_{n-1}^{2}$+3an-1+2,
相减可得:6an=an2+3an+2-(${a}_{n-1}^{2}$+3an-1+2),
整理为:(an+an-1)(an-an-1-3)=0,
∵an+an-1>0,an-an-1=3,
∴数列{an}是等差数列,公差为3,a1=1.
∴an=1+3(n-1)=3n-2.
(2)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$,
∴数列{bn}的前n项和Tn=$\frac{1}{3}$$[(1-\frac{1}{4})$+$(\frac{1}{4}-\frac{1}{7})$+…+$(\frac{1}{3n-2}-\frac{1}{3n+1})]$=$\frac{1}{3}(1-\frac{1}{3n+1})$=$\frac{n}{3n+1}$.
点评 本题考查了“裂项求和方法”、等差数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.
| A. | $3\sqrt{3}$ | B. | $3\sqrt{2}$ | C. | 2 | D. | $2\sqrt{2}$ |
| A. | (-∞,-2)∪(0,2) | B. | (-2,0)∪(2,+∞) | C. | (-∞,-2)∪(-2,2) | D. | (0,2)∪(2,+∞) |
| A. | 31 | B. | 32 | C. | 63 | D. | 64 |
| A. | 4 | B. | -4 | C. | $\frac{2}{3}$ | D. | -$\frac{2}{3}$ |
| A. | 1125$\sqrt{2}$π | B. | 3375$\sqrt{2}$π | C. | 450π | D. | 900π |
| A. | -1-e | B. | e-1 | C. | 1-e | D. | e+1 |
| A. | 1 | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{3}}}{2}$ |