题目内容

如图,已知点G是△ABC的重心(即三角形各边中线的交点),过点G作直线与AB、AC两边分别交于M、N两点,若
AM
=x
AB
AN
=y
AC
,则
1
x
+
1
y
=3,由平面图形类比到空间图形,设任一经过三棱锥P-ABC的重心G(即各个面的重心与该面所对顶点连线的交点)的平面分别与三条侧棱交于A1、B1、C1,且
PA1
=x
PA
PB1
=y
PB
PC1
=z
PC
,则有
1
x
+
1
y
+
1
z
=
 
考点:平面向量的基本定理及其意义
专题:计算题,探究型
分析:利用平面的向量表示式,可知存在实数λ,μ,γ,且λ+μ+γ=1,使得
PG
PA1
PB1
PC1
.而
PG
=
3
4
(
1
3
PA 
+
1
3
PB 
+
1
3
PC 
)
,建立λ,μ,γ与x,y,z的联系,整体构造出
1
x
+
1
y
+
1
z
求解.
解答: 解:由于G,A1、B1、C1,四点共面,所以存在实数λ,μ,γ,且λ+μ+γ=1,
使得
PG
PA1
PB1
PC1
=λx
PA 
+μy
PB 
+γz
PC 

PG
=
3
4
(
1
3
PA 
+
1
3
PB 
+
1
3
PC 
)
,所以
λx=
1
4
μy=
1
4
γz=
1
4

从而λ+μ+γ=4(
1
x
+
1
y
+
1
z
)=1,所以
1
x
+
1
y
+
1
z
=4
故答案为:4.
点评:本题考查空间向量的表示,向量共面的性质.思维难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网