题目内容

已知数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上.
(1)求a1,a2;并求数列{an}的通项公式;
(2)若bn=
1
anan+1an+2
=k(
1
anan+1
-
1
an+1an+2
),求k,
(3)证明数列{bn}的前n项和Tn
1
60
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件得Sn=n2+2n,n∈N*,由此推导出a1=S1=3,a2=5,an=Sn-Sn-1=2n+1,由此能求出数列{an}的通项公式.
(2)由(1)得bn=
1
(2n+1)(2n+3)(2n+5)
=
1
4
[
1
(2n+1)(2n+3)
-
1
(2n+3)(2n+5)
]
,由此能求出k.
(3)利用裂项求和法求出Tn=
1
4
[
1
3×5
-
1
(2n+3)(2n+5)
]
=
1
60
-
1
4(2n+3)(2n+5)
,由此能证明Tn
1
60
解答: (1)解:∵点Pn(n,Sn)都在函数f(x)=x2+2x的图象上.
Sn=n2+2n,n∈N*
∴a1=S1=3,(2分)
a1+a2=S2=22+2×2=8,∴a2=5.(4分)
由(1)知,Sn=n2+2n,n∈N*
当n≥2时,an=Sn-Sn-1=2n+1,(6分)
由(1)知,a1=3=2×1+1满足上式,(7分)
∴数列{an}的通项公式为an=2n+1.(8分)
(2)解:由(1)得bn=
1
(2n+1)(2n+3)(2n+5)

=
1
4
[
1
(2n+1)(2n+3)
-
1
(2n+3)(2n+5)
]

∵bn=
1
anan+1an+2
=k(
1
anan+1
-
1
an+1an+2
),
∴k=
1
4

(3)证明:Tn=
1
4
[
1
3×5
-
1
5×7
+
1
5×7
-
1
7×9
+…+
1
(2n+1)(2n+3)
-
1
(2n+3)(2n+5)
]
(12分)
=
1
4
[
1
3×5
-
1
(2n+3)(2n+5)
]

=
1
60
-
1
4(2n+3)(2n+5)
1
60

∴Tn
1
60
.(14分)
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网