题目内容
17.(Ⅰ)求证:平面A1B1C1⊥平面A1ABB1;
(Ⅱ)F为线段BB1上一点,当A1B1∥平面ACF时,求$\frac{{B}_{1}F}{{B}_{1}B}$的值.
分析 (Ⅰ):取A1B1,AB的中点M,N,连接C1M,CN,MN,只需证明四边形C1MNC是平行四边形,即可得到C1M⊥平面A1ABB1 ,平面A1B1C1⊥平面A1ABB1
(Ⅱ)可得四边形A1AFB1是平行四边形,即B1F=AA1,由BB1:AA1=3:1,得$\frac{{B}_{1}F}{{B}_{1}B}$=$\frac{1}{3}$.
解答 解:(Ⅰ)证明:取A1B1,AB的中点M,N,连接C1M,CN,MN,
∴AA1∥BB1∥MN,CC1∥MN;
又因为$MN=\frac{A{A}_{1}+B{B}_{1}}{2}$,BB1:CC1:AA1=3:2:1
所以$C{C}_{1}=\frac{A{A}_{1}+B{B}_{1}}{2}=MN$,即四边形C1MNC是平行四边形,∴C1M∥CN
又AA1⊥平面ABC,∴平面ABC⊥平面A1ABB1,
∵平面A1B1C1∩平面A1ABB1=AB,又CN⊥AB,∴CN⊥平面A1ABB1
∴C1M⊥平面A1ABB1 ,又C1M平面A1B1C1
∴平面A1B1C1⊥平面A1ABB1
(Ⅱ)∵A1B1∥平面ACF,A1B1?平面A1ABB1,面ACF∩平面A1ABB1,∴A1B1∥AF.
又AA1∥BB1,所以四边形A1AFB1是平行四边形,∴B1F=AA1,因为BB1:AA1=3:1.
∴$\frac{{B}_{1}F}{{B}_{1}B}$=$\frac{1}{3}$,![]()
点评 本题考查了空间面面平行的判定,线面平行的性质,转化思想,属于中档题,
练习册系列答案
相关题目
7.已知等轴双曲线C的一个焦点是F1(-6,0),点M是等轴双曲线的渐近线上的一个动点,点P是圆(x+6)2+y2=1上的任意一点,则|PM|的最小值是( )
| A. | 3$\sqrt{2}$-1 | B. | 2$\sqrt{3}$-1 | C. | 3$\sqrt{3}$+1 | D. | 2$\sqrt{3}$+2 |
12.已知函数f(x)=x(a-$\frac{1}{e^x}$),曲线y=f(x)上存在两个不同点,使得曲线在这两点处的切线都与y轴垂直,则实数a的取值范围是( )
| A. | (-e2,+∞) | B. | (-e2,0) | C. | (-$\frac{1}{e^2}$,+∞) | D. | (-$\frac{1}{e^2}$,0) |
2.函数$f(x)=\frac{1}{2}cos(ωx+φ)$(ω>0,$|φ|<\frac{π}{2}$)的部分图象如图所示,则φ的值为( )

| A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $-\frac{π}{6}$ | D. | $-\frac{π}{3}$ |
9.某程序框图如图所示,则该程序运行后输出的值是( )

| A. | 0 | B. | -1 | C. | -2 | D. | -8 |
7.已知复数$z=\frac{{a+2{i^3}}}{2-i}$在复平面内对应的点在第四象限,则实数a的取值范围是( )
| A. | (-∞,-1) | B. | (4,+∞) | C. | (-1,4) | D. | (-4,-1) |