题目内容

18.已知数列{an}的各项均为正数,${a_1}=2,{a_{n+1}}-{a_n}=\frac{4}{{{a_{n+1}}+{a_n}}}$,若数列$\left\{{\frac{1}{{{a_{n-1}}+{a_n}}}}\right\}$的前n项和为5,则n=120.

分析 先求出数列的通项公式,即可得到2$\sqrt{n+1}$=22,解得即可.

解答 解:∵数列{an}的各项均为正数,a1=2,an+1-an=$\frac{4}{{a}_{n}+{a}_{n+1}}$,
∴an+12-an2=4,
∴an+12=an2+4,
∴an+1=$\sqrt{4+{a}_{n}^{2}}$
∵a1=2,
∴a2=$\sqrt{4+4}$=2$\sqrt{2}$,
∴a3=$\sqrt{4+8}$=2$\sqrt{3}$,
a4=$\sqrt{4+12}$=2$\sqrt{4}$,

由此猜想an=2$\sqrt{n}$.
∵${a_1}=2,{a_{n+1}}-{a_n}=\frac{4}{{{a_{n+1}}+{a_n}}}$,若数列$\left\{{\frac{1}{{{a_{n-1}}+{a_n}}}}\right\}$的前n项和为5,
∴$\frac{1}{4}$(a2-a1+a3-a2+…+an+1-an)=$\frac{1}{4}$(an+1-2)=5
∴2$\sqrt{n+1}$=22
解得n+1=121,
∴n=120.
故答案为:120.

点评 本题考查实数值的求法,是中档题,解题时要认真审题,注意数列的递推公式、累加法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网