题目内容
| a |
| b |
| c |
| a |
| b |
(1)模:|
| c |
| a |
| b |
(2)方向:向量
| c |
| a |
| b |
| a |
| b |
| a |
| b |
| c |
这样的运算就叫向量的叉乘,又叫外积、向量积.
对于向量的叉乘运算,下列说法正确的是
①
| a |
| a |
| 0 |
②
| a |
| b |
| 0 |
| a |
| b |
③叉乘运算满足交换律,即
| a |
| b |
| b |
| a |
④叉乘运算满足数乘结合律,即λ(
| a |
| b |
| a |
| b |
| a |
| b |
考点:平面向量数量积的运算
专题:平面向量及应用
分析:①|
×
|=|
|2sin0=0,可得
×
=
;
②
×
=
?|
| |
sinθ|=|
|=0?θ=0或π?
和
共线;
③虽然满足|
×
|=|
×
|,但是
×
与
×
的方向相反;
④|λ(
×
)|=|(λ
)×
|=|
×(λ
)|=|λ| |
| |
|sinθ,再利用“右手定则”即可得出.
| a |
| a |
| a |
| a |
| a |
| 0 |
②
| a |
| b |
| 0 |
| a |
| b |
| 0 |
| a |
| b |
③虽然满足|
| a |
| b |
| b |
| a |
| a |
| b |
| b |
| a |
④|λ(
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
解答:
解:①|
×
|=|
|2sin0=0,∴
×
=
,正确;
②
×
=
?|
| |
sinθ|=|
|=0?θ=0或π?
和
共线,正确;
③虽然满足|
×
|=|
×
|,但是
×
与
×
的方向相反,叉乘运算不满足交换律,因此不正确;
④|λ(
×
)|=|(λ
)×
|=|
×(λ
)|=|λ| |
| |
|sinθ,再利用“右手定则”可知:叉乘运算满足数乘结合律.
综上可得:只有①②④正确.
故答案为:①②④.
| a |
| a |
| a |
| a |
| a |
| 0 |
②
| a |
| b |
| 0 |
| a |
| b |
| 0 |
| a |
| b |
③虽然满足|
| a |
| b |
| b |
| a |
| a |
| b |
| b |
| a |
④|λ(
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
综上可得:只有①②④正确.
故答案为:①②④.
点评:本题考查了新定义向量的叉乘运算、向量共线、向量的模,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关题目