题目内容
14.已知函数f(x)=$\left\{\begin{array}{l}{ln(x+1),x>0}\\{\frac{1}{2}x+1,x≤0}\end{array}\right.$,若m<n,且f(m)=f(n),试写出 m-n关于n的函数关系式,并指出该函数的定义域.分析 画出f(x)的图象如图所示,由图象可得0<n≤2,根据m<n,且f(m)=f(n),得到ln(n+1)=$\frac{1}{2}$m+1,求出m,再表示出m-n即可.
解答
解:画出f(x)的图象如图所示:
∵m<n,且f(m)=f(n),
∴0<n≤2,ln(n+1)=$\frac{1}{2}$m+1,
∴m=2ln(n+1)-2
∴y=m-n=2ln(n+1)-2-n,
其定义域为(0,2]
点评 本题考查了分段函数的图象的画法和函数的应用,属于基础题.
练习册系列答案
相关题目
6.为了得到函数y=2+sin(2x+$\frac{π}{6}$)的图象,只须将函数y=sin2x的图象平移向量( )
| A. | ($\frac{π}{6}$,-2) | B. | ($\frac{π}{12}$,2) | C. | ($-\frac{π}{12}$,-2) | D. | ($-\frac{π}{12}$,2) |
4.过圆x2+y2=4外一点M(4,-1)引圆的两条切线,则经过两切点的直线方程是( )
| A. | 4x-y-4=0 | B. | 4x+y-4=0 | C. | 4x+y+4=0 | D. | 4x-y+4=0 |