题目内容
2.函数f(x)=cos2x的最小正周期为( )| A. | $\frac{π}{2}$ | B. | π | C. | 2π | D. | 4π |
分析 根据三角函数的周期公式进行计算即可.
解答 解:函数的周期T=$\frac{2π}{2}=π$,
故选:B.
点评 本题主要考查函数的周期的计算,根据三角函数的周期公式是解决本题的关键.
练习册系列答案
相关题目
7.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-6x+a,则不等式f(x)<|x|的解集是( )
| A. | (0,7) | B. | (-5,7) | C. | (-5,0) | D. | (-∞,-5)∪(0,7) |
14.某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样的方法(按A类、B类分两层)从该工厂的工人中抽取100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数),结果如表.
表1:A类工人生产能力的频数分布表
表2:B类工人生产能力的频数分布表
(1)确定x,y的值;
(2)完成下面2×2列联表,并回答能否在犯错误的概率不超过0.001的前提下认为工人的生产能力与工人的类别有关系?
(3)工厂规定生产零件数在[130,140)的工人为优秀员工,在[140,150)的工人为模范员工,那么在样本的A类工人中的优秀员工和模范员工中任意抽2人进行示范工作演示,试写出所抽的模范员工的人数X的分布列和期望.
下面的临界值表仅供参考:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
表1:A类工人生产能力的频数分布表
| 生产能力分组 | [110,120) | [120,130) | [130,140) | [140,150) |
| 人数 | 8 | x | 3 | 2 |
| 生产能力分组 | [110,120) | [120,130) | [130,140) | [140,150) |
| 人数 | 6 | y | 27 | 18 |
(2)完成下面2×2列联表,并回答能否在犯错误的概率不超过0.001的前提下认为工人的生产能力与工人的类别有关系?
| 生产能力分组 工人类别 | [110,130) | [130,150) | 总计 |
| A类工人 | 20 | 5 | 25 |
| B类工人 | 30 | 45 | 75 |
| 总计 | 50 | 50 | 100 |
下面的临界值表仅供参考:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |