题目内容

2.如图,△ABO是以∠O=120°为顶点的等腰三角形,点P在以AB为直径的半圆内(包括边界),若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x、y∈R),则x2+y2的取值范围是[$\frac{1}{2}$,2+$\sqrt{3}$].

分析 两边平方,得出|OP|2关于x,y的表达式,根据|OP|的范围得出不等式组,利用基本不等式的性质得出结论.

解答 解:设OA=OB=1,则$\overrightarrow{OA}•\overrightarrow{OB}$=-cos120°=-$\frac{1}{2}$,AB=$\sqrt{3}$,O到AB的距离为$\frac{1}{2}$,
∵$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,∴${\overrightarrow{OP}}^{2}$=x2${\overrightarrow{OA}}^{2}$+y2${\overrightarrow{OB}}^{2}$+2xy$\overrightarrow{OA}•\overrightarrow{OB}$=x2+y2-xy,
∵P在以AB为直径的半圆内(包括边界),
∴$\frac{1}{2}$≤OP≤$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$,
∴$\frac{1}{4}$≤x2+y2-xy≤1+$\frac{\sqrt{3}}{2}$,
由图可知x>0,y>0,∴xy≤$\frac{1}{2}$(x2+y2),
∴$\frac{1}{4}$≤$\frac{1}{2}$(x2+y2)≤1+$\frac{\sqrt{3}}{2}$,
∴$\frac{1}{2}$≤x2+y2≤2+$\sqrt{3}$.
故答案为:[$\frac{1}{2}$,2+$\sqrt{3}$].

点评 本题考查了平面向量的基本定理,数量积运算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网