题目内容
9.在△ABC中,若B=3C,求$\frac{b}{c}$的取值范围.分析 利用三角函数恒等变换的应用化简可得$\frac{b}{c}$=2cos2C+1,由已知及三角形内角和定理可求C及2C的范围,利用余弦函数的性质可求范围,从而得解.
解答 解:∵$\frac{b}{c}$=$\frac{sinB}{sinC}$=$\frac{sin3C}{sinC}$=$\frac{sin2CcosC+cos2CsinC}{sinC}$=$\frac{2sinCco{s}^{2}C+cos2CsinC}{sinC}$=2cos2C+cos2C=2cos2C+1,
∵三角形ABC中,B=3C,A+B+C=π,
∴可得:C=$\frac{π}{4}$-$\frac{A}{4}$∈(0,$\frac{π}{4}$),2C∈(0,$\frac{π}{2}$),
∴cos2C∈(0,1),
∴$\frac{b}{c}$=2cos2C+1∈(1,3).
点评 本题主要考查了正弦定理,二倍角的正弦函数公式,余弦函数的图象和性质的应用,熟练掌握正弦定理,余弦函数的图象和性质是解题的关键,属于中档题.
练习册系列答案
相关题目
17.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2列联表;
(2)判断是否有95%的把握认为“性别与休闲方式”有关系.
附:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
(1)根据以上数据建立一个2×2列联表;
(2)判断是否有95%的把握认为“性别与休闲方式”有关系.
附:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
| P(Χ2>k0) | 0.100 | 0.050 | 0.010 |
| k0 | 2.706 | 3.841 | 6.635 |
14.等比数列{an}中,公比q=2,首项a1=2,函数f(x)=x(x-a1)(x-a2),则f'(0)=( )
| A. | 8 | B. | -8 | C. | 28 | D. | -28 |
18.某同学在利用“五点法”作函数f(x)=Asin(ωx+Φ)+t的图象时,列出了如下表格中的部分数据
(1)请将表格补充完整,并写出f(x)的解析式;
(2)若x∈[-$\frac{5π}{12},\frac{π}{4}}$],求f(x)的最大值和最小值.
| x | $\frac{5π}{12}$ | $\frac{3π}{4}$ | |||
| ωx+Φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| f(x) | 6 | -2 |
(2)若x∈[-$\frac{5π}{12},\frac{π}{4}}$],求f(x)的最大值和最小值.
19.已知x2+4xy-3=0,其中x>0,y∈R,则x+y的最小值是( )
| A. | $\frac{3}{2}$ | B. | 3 | C. | 1 | D. | 2 |