题目内容
已知,a,b,c>0,求证:a3+b3+c3≥
(a2+b2+c2)(a+b+c).
| 1 |
| 3 |
考点:不等式的证明
专题:推理和证明
分析:利用作差法,易证3(a3+b3+c3)-(a2+b2+c2)(a+b+c)=(a+b)(a-b)2+(b+c)(b-c)2+(a+c)(a-c)2,又a,b,c>0,从而可得a3+b3+c3≥
(a2+b2+c2)(a+b+c).
| 1 |
| 3 |
解答:
证明:3(a3+b3+c3)-(a2+b2+c2)(a+b+c)
=3(a3+b3+c3)-(a3+b3+c3+a2b+b2a+a2c+c2a+b2c+c2b)
=[(a3+b3)-(a2b+b2a)]+[(b3+c3)-(b2c+c2b)]+[(a3+c3)-(a2c+c2a)],
=[(a+b)(a2-ab+b2)-ab(a+b)]+[(b+c)(b2-bc+c2)-bc(b+c)]+[(a+c)(a2-ac+c2)-ac(a+c)]
=(a+b)(a-b)2+(b+c)(b-c)2+(a+c)(a-c)2,
∵a,b,c>0,
∴a+b>0,(a-b)2≥0,
∴(a+b)(a-b)2≥0,同理可得(b+c)(b-c)2≥0,(a+c)(a-c)2≥0,
∴(a+b)(a-b)2+(b+c)(b-c)2+(a+c)(a-c)2≥0,
∴a3+b3+c3≥
(a2+b2+c2)(a+b+c).
=3(a3+b3+c3)-(a3+b3+c3+a2b+b2a+a2c+c2a+b2c+c2b)
=[(a3+b3)-(a2b+b2a)]+[(b3+c3)-(b2c+c2b)]+[(a3+c3)-(a2c+c2a)],
=[(a+b)(a2-ab+b2)-ab(a+b)]+[(b+c)(b2-bc+c2)-bc(b+c)]+[(a+c)(a2-ac+c2)-ac(a+c)]
=(a+b)(a-b)2+(b+c)(b-c)2+(a+c)(a-c)2,
∵a,b,c>0,
∴a+b>0,(a-b)2≥0,
∴(a+b)(a-b)2≥0,同理可得(b+c)(b-c)2≥0,(a+c)(a-c)2≥0,
∴(a+b)(a-b)2+(b+c)(b-c)2+(a+c)(a-c)2≥0,
∴a3+b3+c3≥
| 1 |
| 3 |
点评:本题考查不等式的证明,考查作差法的应用,考查立方差公式与平方差公式的综合应用,考查变形、推理能力,属于中档题.
练习册系列答案
相关题目
“cos2α=
”是“sinα=
”的( )
| 1 |
| 2 |
| 1 |
| 2 |
| A、充分而不必要条件 |
| B、必要而不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
在直二面角α-l-β的棱l上取一点A、过A分别在α,β内A的同侧作与l成45°的直线,则这两条直线所夹的角为( )
| A、45° | B、60° |
| C、90° | D、120° |
已知函数f(x)=
x2+4lnx,若存在满足1≤x0≤3的实数x0,使得曲线f(x)在点(x0,f(x0))处的切线与直线x+my-10=0垂直,则实数m的取值范围是( )
| 1 |
| 2 |
| A、[5,+∞) | ||
| B、[4,5] | ||
C、[4,
| ||
| D、(-∞,4] |