题目内容

14.已知[x]表示不超过实数x的最大整数(x∈R),如:[-1.3]=-2,[0.8]=0,[3.4]=3.定义{x}=x-[x],给出如下命题:
①使[x+1]=3成立的x的取值范围是2≤x<3;
②函数y={x}的定义域为R,值域为[0,1];
③设函数f(x)=$\left\{\begin{array}{l}\left\{x\right\}\begin{array}{l}{\;},{x≥0}\end{array}\\ f(x+1)\begin{array}{l}{\;},{x<0}\end{array}\end{array}$,则函数y=f(x)-$\frac{1}{4}$x-$\frac{1}{4}$的不同零点有3个.
④{$\frac{2013}{2014}}$}+{${\frac{{{{2013}^2}}}{2014}}$}+{${\frac{{{{2013}^3}}}{2014}}$}+…+{${\frac{{{{2013}^{2014}}}}{2014}$}=1007.
其中正确命题的序号是①③④.(填上所有正确命题的序号)

分析 ①由[x]表示不超过实数x的最大整数,即可判断[x+1]=3的x的取值范围;
②函数{x}的定义域为R,推出函数的最小正周期为1,再推出当0≤x<1时,y={x}的值域,从而判断②;
③分类讨论,求出函数的零点,即可得出结论;
④推出n分别为偶数、奇数时,求出{$\frac{201{3}^{n}}{2014}$},从而判断④的正确性.

解答 解:①已知[x]表示不超过实数x的最大整数,由[x+1]=3得3≤x+1<4即2≤x<3,故①正确;
②函数{x}的定义域为R,又由{x+1}=(x+1)-[x+1]=x-[x]={x},故函数{x}=x-[x]是周期为1的函数,
当0≤x<1时,{x}=x-[x]=x-0=x,故函数{x}的值域为[0,1),故②错误;
③∵f(x)=$\left\{\begin{array}{l}\left\{x\right\}\begin{array}{l}{\;},{x≥0}\end{array}\\ f(x+1)\begin{array}{l}{\;},{x<0}\end{array}\end{array}$,∴0≤f(x)<1;当0≤x<1时,f(x)=x,∴y=f(x)-$\frac{1}{4}$x-$\frac{1}{4}$有零点x=$\frac{1}{3}$;当x≥1时,∵0≤f(x)<1,∴y=f(x)-$\frac{1}{4}$x-$\frac{1}{4}$在x=1时有最大值$\frac{1}{2}$,且无最小值,∴函数y有一零点;当x<0时,∵0≤f(x)<1,∴y=f(x)-$\frac{1}{4}$x-$\frac{1}{4}$在x=0时有极小值-$\frac{1}{4}$,且无最大值,∴函数y有一零点;∴正确.
④当n为偶数时,{$\frac{201{3}^{n}}{2014}$}={2014n-1-n•2014n-2+…-n+$\frac{1}{2014}$}=$\frac{1}{2014}$,
当n为奇数时,{$\frac{201{3}^{n}}{2014}$}={2014n-1-n•2014n-2+…+n-$\frac{1}{2014}$}=1-$\frac{1}{2014}$,
故{{$\frac{2013}{2014}}$}+{${\frac{{{{2013}^2}}}{2014}}$}+{${\frac{{{{2013}^3}}}{2014}}$}+…+{${\frac{{{{2013}^{2014}}}}{2014}$}=($\frac{2013}{2014}$+$\frac{1}{2014}$)+($\frac{2013}{2014}$+$\frac{1}{2014}$)+…+($\frac{2013}{2014}$+$\frac{1}{2014}$)=1007,故正确.
故答案为①③④.

点评 本题是新定义题,考查函数的性质及应用,考查函数的定义域、值域以及函数的周期性,运用图象相交的交点个数来确定函数的零点个数,对定义的准确理解是迅速解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网