题目内容

2.若函数y=$\sqrt{3}{sin^2}x+sinx•cosx-\frac{{\sqrt{3}}}{2}$的图象关于直线x=φ对称,则x=φ可以为(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

分析 由三角函数恒等变换的应用化简函数解析式,利用正弦函数的对称性,代入x的值函数取得最值,然后即可求得φ的值.

解答 解:∵y=$\sqrt{3}{sin^2}x+sinx•cosx-\frac{{\sqrt{3}}}{2}$=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x=sin(2x-$\frac{π}{3}$),
又∵图象关于直线x=φ对称,
∴f(φ)=sin(2×φ-$\frac{π}{3}$)=±1,可得:2×φ-$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,
解得:φ=$\frac{kπ}{2}$+$\frac{5π}{12}$,k∈Z,可得当k=0时,x=φ=$\frac{5π}{12}$.
故选:A.

点评 本题主要考查了三角函数恒等变换的应用,正弦函数的对称性,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网