题目内容
1.某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为( )| A. | 16 | B. | 17 | C. | 18 | D. | 19 |
分析 根据系统抽样的特征,从1000名学生从中抽取一个容量为40的样本,抽样的分段间隔为$\frac{1000}{40}$=25,结合从第18组抽取的号码为443,可得第一组用简单随机抽样抽取的号码.
解答 解:∵从1000名学生从中抽取一个容量为40的样本,
∴系统抽样的分段间隔为$\frac{1000}{40}$=25,
设第一部分随机抽取一个号码为x,
则抽取的第18编号为x+17×25=443,∴x=18.
故选C.
点评 本题考查了系统抽样方法,关键是求得系统抽样的分段间隔.
练习册系列答案
相关题目
11.各项均为正数的等比数列{an}的前n项和为Sn,若S4=10,S12=130,则S8=( )
| A. | -30 | B. | 40 | C. | 40或-30 | D. | 40或-50 |
12.已知点P(-3,5),Q(2,1),向量$\overrightarrow{m}$=(2λ-1,λ+1),若$\overrightarrow{PQ}$∥$\overrightarrow{m}$,则实数λ等于( )
| A. | $\frac{1}{13}$ | B. | $-\frac{1}{13}$ | C. | $\frac{1}{3}$ | D. | $-\frac{1}{3}$ |
9.设x,y满足约束条件$\left\{\begin{array}{l}8x-y-4≤0\\ x+y+1≥0\\ y-4x≤0\end{array}\right.$,目标函数z=ax+by(a>0,b>0)的最大值为2,则$\frac{1}{a}+\frac{1}{b}$的最小值为( )
| A. | 5 | B. | $\frac{5}{2}$ | C. | $\frac{9}{2}$ | D. | 9 |
16.国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:
(1)根据已知数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?
(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,n=a+b+c+d,
| 支持 | 不支持 | 合计 | |
| 年龄不大于50岁 | 20 | 60 | 80 |
| 年龄大于50岁 | 10 | 10 | 20 |
| 合计 | 30 | 70 | 100 |
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?
(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,n=a+b+c+d,
| P(K2>k) | 0.100 | 0.050 | 0.025 | 0.010 |
| k | 2.706 | 3.841 | 5.024 | 6.635 |