题目内容
12.已知点P(-3,5),Q(2,1),向量$\overrightarrow{m}$=(2λ-1,λ+1),若$\overrightarrow{PQ}$∥$\overrightarrow{m}$,则实数λ等于( )| A. | $\frac{1}{13}$ | B. | $-\frac{1}{13}$ | C. | $\frac{1}{3}$ | D. | $-\frac{1}{3}$ |
分析 根据题意,由P、Q的坐标计算可得向量$\overrightarrow{PQ}$的坐标,进而由向量平行的坐标表示方法可得5(λ+1)=(-4)×(2λ-1),解可得λ的值,即可得答案.
解答 根据题意,点P(-3,5),Q(2,1),则$\overrightarrow{PQ}$=(5,-4),
若$\overrightarrow{PQ}$∥$\overrightarrow{m}$,则有5(λ+1)=(-4)×(2λ-1),
解可得λ=-$\frac{1}{13}$;
故选:B.
点评 本题考查向量平行的坐标表示方法,关键是列出方程并准确计算.
练习册系列答案
相关题目
2.等差数列的前4项之和为30,前8项之和为100,则它的前12项之和为( )
| A. | 130 | B. | 170 | C. | 210 | D. | 260 |
3.一个袋中有大小相同,编号分别为1,2,3,4,5的五个球,从中有放回地每次取一个球,共取3次,取得三个球的编号之和不小于13的概率为( )
| A. | $\frac{4}{125}$ | B. | $\frac{7}{125}$ | C. | $\frac{2}{25}$ | D. | $\frac{4}{25}$ |
20.已知集合A={x∈N|x2+3x-10≤0},则集合A中元素的个数为( )
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |
17.已知抛物线x2=4y的焦点是F,直线$x-\sqrt{3}y+\sqrt{3}=0$交抛物线于A,B两点,且|AF|>|BF|,则$\frac{{|{AF}|}}{{|{BF}|}}$=( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
4.下列关于命题的说法错误的是( )
| A. | 命题“若x2-3x+2=0,则x=2”的逆否命题为“若x≠2,则x2-3x+2≠0” | |
| B. | “a=2”是“函数f(x)=logax在区间(0,+∞)上为增函数”的充分不必要条件 | |
| C. | 命题“若随机变量X~N(1,4),P(X≤0)=m,则P(0<X<2)=1-2m.”为真命题 | |
| D. | 若命题P:?n∈N,2n>1000,则¬P:?n∈N,2n>1000 |