ÌâÄ¿ÄÚÈÝ
16£®¹ú¼Ê°Âί»á½«ÓÚ2017Äê9ÔÂ15ÈÕÔÚÃØÂ³ÀûÂíÕÙ¿ª130´Î»áÒé¾ö¶¨2024ÄêµÚ33½ì°ÂÔË»á¾Ù°ìµØ£¬Ä¿Ç°µÂ¹úºº±¤£¬ÃÀ¹ú²¨Ê¿¶ÙµÈÉê°ì³ÇÊÐÒòÊÐÃñµ£ÐÄÈüÊ·ÑÓó¬Ö§¶øÏà¼ÌÍ˳ö£¬Ä³»ú¹¹Îªµ÷²éÎÒ¹ú¹«Ãñ¶ÔÉê°ì°ÂÔË»áµÄ̬¶È£¬Ñ¡ÁËÄ³Ð¡ÇøµÄ100λ¾ÓÃñµ÷²é½á¹ûͳ¼ÆÈçÏ£º| Ö§³Ö | ²»Ö§³Ö | ºÏ¼Æ | |
| ÄêÁä²»´óÓÚ50Ëê | 20 | 60 | 80 |
| ÄêÁä´óÓÚ50Ëê | 10 | 10 | 20 |
| ºÏ¼Æ | 30 | 70 | 100 |
£¨2£©ÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý5%µÄǰÌáÏÂÈÏΪ²»Í¬ÄêÁäÓëÖ§³ÖÉê°ì°ÂÔËÎ޹أ¿
£¨3£©ÒÑÖªÔÚ±»µ÷²éµÄÄêÁä´óÓÚ50ËêµÄÖ§³ÖÕßÖÐÓÐ5ÃûÅ®ÐÔ£¬ÆäÖÐ2λÊÇÅ®½Ìʦ£¬ÏÖ´ÓÕâ5ÃûÅ®ÐÔÖÐËæ»ú³éÈ¡3ÈË£¬ÇóÖÁ¶àÓÐ1λ½ÌʦµÄ¸ÅÂÊ£®
¸½£º${K^2}=\frac{{n{{£¨{ad-bc}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{b+d}£©}}$£¬n=a+b+c+d£¬
| P£¨K2£¾k£© | 0.100 | 0.050 | 0.025 | 0.010 |
| k | 2.706 | 3.841 | 5.024 | 6.635 |
·ÖÎö £¨1£©¸ù¾ÝÌõ¼þÖÐËù¸øµÄÊý¾Ý£¬ÁгöÁÐÁª±í£¬ÌîÉ϶ÔÓ¦µÄÊý¾Ý£¬µÃµ½ÁÐÁª±í£®
£¨2£©¼ÙÉèÁûÑÆÃ»ÓйØÏµ£¬¸ù¾ÝÉÏÒ»ÎÊ×ö³öµÄÁÐÁª±í£¬°ÑÇóµÃµÄÊý¾Ý´úÈëÇó¹Û²âÖµµÄ¹«Ê½Çó³ö¹Û²âÖµ£¬°Ñ¹Û²âֵͬÁÙ½çÖµ½øÐбȽϵõ½½áÂÛ£®
£¨3£©Áоٷ¨È·¶¨»ù±¾Ê¼þ£¬¼´¿ÉÇó³ö¸ÅÂÊ£®
½â´ð ½â£º£¨1£©
| Ö§³Ö | ²»Ö§³Ö | ºÏ¼Æ | |
| ÄêÁä²»´óÓÚ50Ëê | 20 | 60 | 80 |
| ÄêÁä´óÓÚ50Ëê | 10 | 10 | 20 |
| ºÏ¼Æ | 30 | 70 | 100 |
ËùÒÔÄÜÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý5%µÄǰÌáÏÂÈÏΪ²»Í¬ÄêÁäÓëÖ§³ÖÉê°ì°ÂÔËÎ޹أ»
£¨3£©¼Ç5ÈËΪabcde£¬ÆäÖÐab±íʾ½Ìʦ£¬´Ó5ÈËÈÎÒâ³é3È˵ÄËùÓеȿÉÄÜʼþÊÇ£ºabc£¬abd£¬abe£¬acd£¬ace£¬ade£¬bcd£¬bce£¬bde£¬cde¹²10¸ö£¬ÆäÖÐÖÁ¶à1λ½ÌʦÓÐ7¸ö»ù±¾Ê¼þ£ºacd£¬ace£¬ade£¬bcd£¬bce£¬bde£¬cde£¬ËùÒÔËùÇó¸ÅÂÊÊÇ$\frac{7}{10}$£®
µãÆÀ ±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦Ó㬿¼²é¸ÅÂʵļÆË㣬±¾Ìâ½âÌâµÄ¹Ø¼üÊǸù¾ÝËù¸øµÄÊý¾ÝÌîÔÚÁÐÁª±íÖУ¬×¢ÒâÊý¾ÝµÄλÖò»Òª³ö´í£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
4£®ÏÂÁйØÓÚÃüÌâµÄ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©
| A£® | ÃüÌâ¡°Èôx2-3x+2=0£¬Ôòx=2¡±µÄÄæ·ñÃüÌâΪ¡°Èôx¡Ù2£¬Ôòx2-3x+2¡Ù0¡± | |
| B£® | ¡°a=2¡±ÊÇ¡°º¯Êýf£¨x£©=logaxÔÚÇø¼ä£¨0£¬+¡Þ£©ÉÏΪÔöº¯Êý¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ | |
| C£® | ÃüÌâ¡°ÈôËæ»ú±äÁ¿X¡«N£¨1£¬4£©£¬P£¨X¡Ü0£©=m£¬ÔòP£¨0£¼X£¼2£©=1-2m£®¡±ÎªÕæÃüÌâ | |
| D£® | ÈôÃüÌâP£º?n¡ÊN£¬2n£¾1000£¬Ôò©VP£º?n¡ÊN£¬2n£¾1000 |
11£®ÒÑÖªº¯Êý$f£¨x£©=sin£¨{¦Øx-\frac{¦Ð}{6}}£©+\frac{1}{2}£¨{¦Ø£¾0}£©$£¬ÇÒ$f£¨¦Á£©=-\frac{1}{2}$£¬$f£¨¦Â£©=\frac{1}{2}$£¬Èô|¦Á-¦Â|µÄ×îСֵΪ$\frac{3¦Ð}{4}$£¬Ôò¦ØµÄֵΪ£¨¡¡¡¡£©
| A£® | 1 | B£® | $\frac{1}{3}$ | C£® | $\frac{2}{3}$ | D£® | 2 |
8£®ÒÑÖªA£¨3£¬-1£©£¬B=£¨x£¬y£©£¬C£¨0£¬1£©Èýµã¹²Ïߣ¬Èôx£¬y¾ùΪÕýÊý£¬Ôò$\frac{3}{x}$+$\frac{2}{y}$µÄ×îСֵÊÇ£¨¡¡¡¡£©
| A£® | $\frac{5}{3}$ | B£® | $\frac{8}{3}$ | C£® | 8 | D£® | 24 |
20£®ÊýÁÐ{an}µÄǰÏîºÍΪ${S_n}£¨{n¡Ê{N^*}}£©$£¬ÇÒ${a_1}=\frac{1}{2}£¬{S_n}={n^2}{a_n}£¨{n¡Ê{N^*}}£©$£¬ÀûÓùéÄÉÍÆÀí£¬²ÂÏë{an}µÄͨÏʽΪ£¨¡¡¡¡£©
| A£® | ${a_n}=\frac{2n-4}{3^n}$ | B£® | ${a_n}=\frac{1}{{n£¨{n+1}£©}}£¨{n¡Ê{N^*}}£©$ | C£® | ${a_n}=\frac{1}{2n}$ | D£® | ${a_n}=\frac{2}{n}$ |